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1.0 INTRODUCTION
1.1  Objectives

Recent issues emerging in our fiscal and ecological environments have promulgated that
federal agencies shall promote activities which respond to the improvement of both. In
response to these developments, the National Aeronautics and Space Administration
(NASA) has undertaken an innovative approach to improve the control of materials used
in all NASA manufacturing activities. In concert with this goal, NASA is requiring that
its contractors and their sub-contractors perform a more intensive consolidation of
technologies that can provide an accounting of materials, which includes in-coming
materials, materials in process, end-products and waste materials.

This concept is especially desirable for all contractor organizations participating in space
hardware construction and refurbishment. Many NASA contractors are already
participating in organizational improvement programs, such as Total Quality
Management (TQM). TQM techniques are currently seen as the most effective
management techniques to improve productivity and reliability. In parallel with the
concepts for improving management efficiency, TQM also promotes the development of
efficient strategies for managing materials control. Within the basic philosophy of TQM,
NASA and its contracting organizations will provide a materials control infra-structure
to maintain knowledge of any critical material's lack of conformance to specifications at
all times. In addition the same data will permit the identification of waste materials for
ecological control. The practice of chemical fingerprinting principles will provide this
capability.

Chemical fingerprinting is an emerging technology which enables the manufacturing
organization to maintain control over the materials used in its operations. In this respect
chemical fingerprinting provides a Total Quality Management tool that can develop
confidence in the integrity of incoming materials and knowledge of the composition of
wastes. Using the appropriate blend of chemical analysis, data management, and
chemometrics, chemical fingerprinting programs provide management with information
needed for making critical decisions at the appropriate time. The utility of fingerprint
analysis spreads across all manufacturing programs and can provide many benefits,
including quality, safety and cost-effectiveness. These benefits are achieved primarily
through cost-avoidance occurances and open communication between manufacturing

and management.

The purpose of this handbook is to provide guidelines to NASA and its contractor
personnel for the planning and implementation of chemical fingerprinting programs and
to illustrate the chemical and statistical fundamentals required for successful use of
chemical fingerprinting in a NASA contractor's facility. Generic examples of both
equipment and procedures are included in these guidelines to illustrate how the various
methodologies (chemical analyis, database management, and chemometrics) can work
together in a cohesive chemical fingerprinting program. These guidelines are necessarily



limited in scope, since there will undoubtedly be other approaches to chemical
fingerprinting which are feasible and, in some cases, even necessary due to a particular
set of circumstances. Innovation is a very significant part of chemical fingerprinting and
it is important to encourage everyone to work towards a uniform capability across the
aerospace industry.

A number of analytical methods using instrumentation currently available in chemical
laboratories are listed here, as well as some very specialized instruments which are
normally more expensive and more limited in their scope of activities. Howéver, each of
the instruments listed is able to provide a characteristic fingerprint or property of the
material being tested and can be used for subsequent signature analysis. Two themes
which are important to establishing chemical fingerprinting programs are:

1. The instrumentation needed by each contractor will depend on their particular
set of requirements for both implementing and maintaining a chemical
fingerprinting program.

2. In most cases, each contractor has appropriate analytical equipment,
personnel, and procedures to either be currently performing such analyses, or be
able to begin to collect data, that will contribute to the baseline information
needed for chemical fingerprinting.

The accessibility and sharing of this information by all NASA contractors will become
an objective in the future.

The critical philosophy underlying chemical fingerprints is to be able to determine the
crucial relationships among the many fingerprints that can be obtained with analytical
instrumentation. Only then can proper decisions be made regarding the materials
conformance to specification or fitness for use. Often, unambiguous results can only be
obtained with the assistance of statistical (or chemometric) techniques. It is the
complementary collaboration between chemical and statistical analysis which is the key
to a successful fingerprint application. The chosen methods must produce results which
can be utilized effectively for both engineering and management purposes.

1.2.  Definitions
1.2.1 Chemical Fingerprinting

Chemical fingerprinting utilizes various materials characterization techniques to acquire
specific types of information (See Appendix I for a brief description of applicable
techniques), such as the following:

a.) the elemental or molecular composition of a material,
b.) the measurement of the individual constituents of a material, or
c.) the measurement of a relevant property of the material.



Dependent upon the need, this information may be qualitative or quantitative in nature.
The utility of chemical fingerprinting to provide a means for determining a material
uniquely is realized through the use of individual measruements (chemical fingerprints)
and the compilation of such measurements (signatures). For example, the concept of
chemical fingerprints, can be defined by considering recorded measurements on a
material using various analytical instruments as shown in Figure 1 below.
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Figure 1. Pictorial representation of several fingerprints to make a signature.

Each of these individual fingerprints were acquired from measurements on the same
material and thus provides individual features that are pertinent to that material. If
analysis of a new batch of the same material indicates different features, then obviously
the materials are not equivalent. It is the ability to completely characterize materials of
interest with an appropriate “signature" that enables chemical fingerprinting
methodology to promote confindence in the materials used in manufacturing.

1.2.2 Signature

A "signature” is the composite data from several analytical instruments for the same
material. The signature allows one to characterize a material of interest using chemical



and physical measurements. Each of the fingerprints shown in Figure 1 contains
information about the materials; however, that one piece of information may not
contribute to determining whether a material is "fit for service” or conforms to a specific
specification. A fingerprint yields important, but limited, information and usually cannot
adequately characterize a complex multi-component material. It is the ability to
completely characterize materials of interest with an appropriate "signature” that enables
chemical fingerprinting methodology to promote confidence in the materials used in
manufacturing.

The signature of the material represented in Figure 1 may be complete using the data as
shown. However, different materials will require a different set of analyses from those
shown in Figure 1. For less complex materials, one would expect that fewer individual
measurements or fingerprints would be required to formulate the desired signature.

1.2.3 Data Management Systems

Implicit in the concept of signature or fingerprint analysis is the computerized database
or databases which contain the baseline information and historical archiving of
fingerprints over extended periods of time. Such databases are normally maintained in
individual datafiles supplied with analytical instrumentation and supporting software.
Robust data management systems (also known commercially as Laboratory Information
Management Systems or LIMS) for handling the full fingerprint and signature
information are not always readily available. Consequently, the data management
systems used in chemical fingerprinting programs will continuously have to be up-
graded to meet the demands of the organization. Hence, there is no single definition or
solution for the data management requirements which fits all organizations. NASA may
elect to establish a fingerprint database in the future and will at that time provide a
consistent definition for the developement of a database architecture and protocol.

1.2.4. Chemometrics

Chemometrics is a discipline within analytical chemistry concerned with the selection
and optimization of instrumental methods as well as the interpretation of data from these
chemical analyses. Chemometrics makes extensive use of mathematical and statistical
methods with the intent of producing a maximum of concise chemical information. The
use of chemometrics becomes more obvious as the data analysis becomes more
complex. Chemometric techniques can assist the measurement process by determining
sampling requirements, the number of experiments required to characterize an analytical
procedure, or to extract the useful characteristics from otherwise ambiguous data sets.
Many software packages are available commercially to provide support in statistical
analysis.

1.2.5. Fitness-for-Use and "Lot-to-Lot Consistency

The terms "fitness for use” and "lot-to-lot consistency” relate to the knowledge of the
exact physical and chemical nature of the material, together with the material's intended



use. The exact definitions are dependent upon both the material in question and its
intended process or product application. A clear and concise statement of these ideas as
they relate to a given material is a necessary prerequisite to any fingerprinting effort.

The term "lot-to-lot consistency” is important in any production facility that requires
multiple suppliers or materials from the same supplier over an extended period of time.
It refers to the consistency of the material used in production of a specific part.

Specifications for in-coming materials, for instance, can become a starting point for
determining what signatures need to be determined early on in the program. Each
contractor organization can determine what constitutes the minimum essential
information for which "fingerprints" should be established. A successfully tested material
is then one whose "fitness for use" can be easily and quickly demonstrated by the results
of one or more instrumental test procedures. Over a period of time the lot-to-lot
consistency of the vendor can then be determined.

Both chemical and physical measurements obtained from instruments found in the
analytical laboratory can provide the data required for a correct evaluation of the
materials characteristics. Note that it can be a challenge, for a given material, to discover
and elucidate the most efficient combination of practical procedures which will
successfully accomplish the goals of the chemical fingerprinting program.

1.3 Benefits

The fact that chemical fingerprinting utilizes instrumental methods, as compared to
classical wet chemical analysis, provides many advantages. It is the use of the
instrumental technique that provides the diagnostic capability of fingerprinting, which is
one of the most important benefits. The other major advantages which are obtained
through the use of the analytical instruments described here are the ease with which a
manufacturer can provide instrument interfaces to computers for data acquisition,
statistical analysis of the experimental results, and compilation of fingerprint data. Many
instruments are also equipped with automated sampling systems to allow complete
sample analysis without the need for a hand’s on operator, resulting in considerable cost-
savings.

With these advantages, instrumental analysis provides a major capability for the
characterization and identification of materials in a reliable and timely manner. It is also
anticipated that the analytical instruments which are used for chemical fingerprinting are
primarily already physically in place in most laboratories, being used primarily for in-
process verification of particular products or processes. Combining these capabilities
with computer based systems for laboratory automation, data manipulation and statistical
analysis, these same instruments can provide the basic foundation for implementing a
chemical fingerprinting program.

The use of fingerprinting as a quality assurance technique can be profitably applied to



problems in all industries ranging from aerospace to pharmaceuticals. The major benefit
to NASA is the ability to build space hardware at reduced costs over the life cycle of the
system. All manufacturing organizations can benefit from the chemical fingerprinting
approach in a number of different ways. The three major benefit areas, which are
described below, are cost avoidance, increased materials reliability and expeditious
resolution of materials problems when they occur. For example, cost benefits are
enhanced through the manufacturing operation by eliminating the processing of
materials which would not allow the final product to conform to the specifications. It is
more cost effective to reject defective materials than defective parts.

In addition, the following statements list some benefits derived from utilization of
chemical fingerprinting in a manufacturing operation:

1. When fully developed, the fingerprints and signatures developed provide a baseline
chemical profile of those materials currently in use and considered to be in conformance
with the specifications. This information can be utilized strictly in-house, as part of the
contractor's operations, or more importantly, shared with other contractor's as part of a
database for materials used in NASA's manufacturing programs.

2. Lot-to-lot consistency from multiple suppliers or materials from the same supplier
over an extended period of time can be monitored. This would eliminate the customer
not knowing of the occurrence of formulation changes which would affect the
manufacturing processes, its inspectability, or cause environmental damage.

3. Mislabeled products, process contaminations, and material degradations can all be
identified. An organization which utilizes chemical fingerprinting techniques for
materials control will be less likely to be effected by such incidents. As mentioned
earlier, a tremendous cost-avoidance can occur when defective materials are not
introduced into the manufacturing process. Other undesirable and costly problems, such
as contaminating good materials already in production or forming toxic fumes or
flammable by-products when the wrong chemicals are mixed, can easily be avoided
when the materials are correctly identified before use.

4. Material changes, when they do occur, can readily be traced to their source by
comparison of the questionable lot with the historical information. Formulation
variations and substitutions can be identified whether made at the vendor's facility or at
one of his suppliers.

5. The chemical fingerprinting may be the basis upon which a change, by vendor or
production site, may not require an expensive requalification effort.

6. The acceptance testing of material from a small supplier, who is really a "blender” and
cannot afford an analytical laboratory, may be one of the more practical uses of
fingerprinting. Often a blender may receive ingredients from multiple suppliers who
likewise could not afford the instrumentation or personnel for its own fingerprinting



program.

7. In addition to inspecting in-coming materials for conformance to specifications, the
chemical fingerprinting approach can also be used to monitor intermediate products or
processes in production. Used in this fashion, the approach can then provide confidence
towards the reliable performance of the manufacturing processes and the end products.

8. The database can also supply vital information for failure analyses. Without prior
knowledge of the constituents contained in a material, failure analysis can be a long and
difficult process. The process can be shortened with a more thorough knowledge of the
material.

9. New materials can be developed in a faster time frame and with superior properties.
For example, chemical fingerprinting can identify how a specific ingredient interacts
with other ingredients to provide the optimal formulation to obtain the desired properties
of the material.

10. When existing materials or ingredients are removed from the marketplace, as in the
case of legislation due to environmental concerns, replacement materials must be found
quickly. These replacements may be developmental in nature and not completely
understood. Knowledge of contaminants, by-products, and degradation products are
important to insure employee safety, material perfomance, and compatibility with
existing production facilities.

11. Waste management has become a significant portion of any manufacturing
organization, particularly in the case of the complex processes involved in
manufacturing today's space systems. Thorough knowledge of the ingredients which
leave the manufacturing site, as a gas, liquid, or solid is mandatory in some localities.
Organizations which are performing appropriate accounting of materials are going to
benefit accordingly as environmental laws and regulations are promulgated by both the
federal and the state governments.

1.4  Background

The major advantages which are obtained through the use of analytical instruments such
as described here are the diagnostic capabilites and the ease with which a manufacturer
can provide instrument interfaces to computers for data acquisition, statistical analysis of
the experimental results, and compilation of fingerprint data. There are many useful
examples of chemical fingerprinting programs which successfully guide manufacturing
to produce good products. Most of these programs have been established in industries
with high Hiability when defective products are sent to the marketplace. For example,
pharmaceuticals and food processing facilities cannot afford to have products containing
toxic materials shipped from the production facilities to the marketplace. Consequently,
their in-coming materials are always fingerprinted to insure against inadverdent
accidents to the customers who use their products. Liability lawsuits, which can drain a



corporations fiscal health, are the major results of such accidents. In addition, a number
of chemical industries which use materials by the carload prefer to maintain programs
which make sure of the identity of the reactants before mixing them. In this case the
costs incurred is heavily in favor of performing chemical analysis prior to mixing, rather
than taking a chance that the supplier sent the right material and proceed on with no due
caution.

A number of aerospace examples also have been documented. For instance, the
acceptance testing difficulties encountered during the extensive use of critical but
proprietary insulating foam materials for a NASA propulsion program gave rise to the
critical need for chemical fingerprinting. These formulations are chemically complex
and involve a number of chemical sub-systems, including catalysts, flame retardants,
blowing agents, and surfactants. Some of the critical ingredients are proprietary even at
the sub-tier supplier level. A major risk in the use of proprietary materials is that only
the supplier has purview over the formulation and can, therefore, make any changes he
deems desirable or necessary. While there was no desire for the NASA contractor to
“crack” the formulations, it was imperative to assure the lot-to-lot consistency of these
critical materials for reliable performance of the product. The chemical fingerprinting
approach was the contractor's solution to this dilemma. The NASA contractor
subsequently developed a signature for the formulation and now has confidence in his
ability to evaluate the deliverables required for the end product.

1.5  Supplier Interfaces

Supplier cooperation is vital to any fingerprinting effort for a manufacturing operation.
In order to attain maximum cooperation from suppliers they must be given assurances
that all intellectual property, i.e., proprietary information, will be held in the strictest
confidence. There are benefits for the suppliers who participate in the prime contractor's
chemical fingerprinting program, such as a more in-depth knowledge of their products.
This level of knowledge can only be obtained through use of sophisticated, state-of-the-
art analytical equipment. Many suppliers are equipped with minimally staffed and
instrumented quality control laboratories. Data which provide more comprehensive
insight to their raw materials, processes and products can become a useful product of the
supplier interface. In the case where the vendor is skeptical and reluctant to provide
information, often this problem will resolve itself with fruitful exchanges of information.
The vendor needs to be assured that the intent is not to derive the formulation, but
simply for diagnostic purposes when a material problem is suspected. Often better
relationships are obtained when vendors see how much faster and more conclusive
failure investigations are when material fingerprinting has been previously performed.
One example in which a better relationship was obtained with a reluctant vendor
occurred when fingerprinting diagnosed the cause of a material problem to be not with
the primary vendor but a supplier to that vendor. After notifying the primary vendor that
his supplier was delivering inferior materials, the primary vendor then became very
positive in his commitment to the program.



Depending upon the complexity of the material, knowledge of the supplier's constituents
is essential to the analytical chemist to develop baseline information. Without
knowledge of the constituents, fingerprinting can be done, but the method development
phase takes much longer and the resultant database is not as informative.

Prerequisites for the supplier interface should include a comprehensive knowledge and
understanding of the instrumentation used in the fingerprinting process. Ideally, the
interface personnel should possess a background in the chemistry of the products to be
fingerprinted. The interface personnel may also be the designated custodian of any test
materials received from the supplier and must comply with the spirit and intent of the
proprietary agreements when disseminating these materials.






2.0  Technical Approach
2.1  Implementation

The implementation of chemical fingerprinting in any organization will have to be an
evolutionary process, since chemical signatures will have to be obtained over a
significant period of time for true confidence in the process to evolve. However, most
organizations already have acquired some analytical data which they have used for
comparison purposes on critical materials, thus providing a starting point for the
chemical fingerprinting program. In addition, the NASA contractors, of NASA itself,
can make available a fingerprinting database containing many significant materials of
interest. For proper implementation, one should take into consideration many factors,
including the products or services, the customer's needs, the manufacturing processes
and the raw materials, and the knowledge, skills, and experience of the personnel. Like
any other TQM methodology, it is important that everyone involved in the process
become committed early on.

The major emphasis in establishing a chemical fingerprinting program within
manufacturing is to begin with a well defined approach to both the implementation and
the ensuing activities. The primary activities which need to be performed routinely
within the fingerprint program are:

Select materials to include in the fingerprint program.

Select instrument and techniques for these materials.

Obtain baseline fingerprints for the materials using these instruments.
Compile material signatures from acquired fingerprints.

Develop a signature database on the appropriate system.

Perform materials analyses on materials as required.

APl ol A

Intertwined within these activities are several types of secondary activities which may
not have to be performed on a routine basis. More complex materials or more difficult
analyses will often require considerably more effort to develop the appropriate
methodology for chemical fingerprinting these materials. These secondary activities
include such functions as:

1. Obtain background information on material or analyses.
2. Develop analytical methods for material which are not currently available
or documented and develop criteria for method evaluation.
3. Obtain listing of ingredients from vendor and perform analysis on those
materials to establish baseline fingerprints.
4. Establish a statistical framework for complex or difficult analyses.

The following flowchart identifies the relationships of the primary and secondary
activities which will be included in most approaches to chemical fingerprinting.
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Figure 2. Flowchart showing the major activities involved in chemical fingerprint
implementations.

The first consideration when developing a fingerprint project will be the material
selection process. Generally the need for chemical fingerprinting will be determined by
the criticality of the application in which the material is to be used. For instance, a
bondline material used in a primary structure or a material used in the crew compartment
are examples of critical materials which will probably need to be included in the
fingerprint program. Note that background information at this time will include what is
currently known about the material and its application.

Once it has been determined that chemical fingerprinting of a particular material should
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be performed, the next step should be to identify which instruments and which
techniques are to be used to obtain fingerprints. A number of questions need to
answered in order to formulate the appropriate strategy for fingerprinting the material.
These questions can be categorized for selection of the instrumental method and the
sampling methodology required. These questions include:

1. What is the physical state of the material (solid, liquid, gas, etc.)?

2. Are bulk, surface, or micro properties to be analyzed?

3. Are the analyses needed for inorganics, organics, or a mixture of both?

4. What type of information is needed: qualitative, quantitative, or a mixture?

5. What analytical accuracy andprecision are required?

6. Are the components of interest present at major, minor, or trace levels of
concentration? :

7. What type of analyses is needed: elemental, component, or a functional group?

8. Are there analytical interference or masking problems?

9 What are the important properties of the sample matrix?

10.  Are there one or more chemically/physically distinct phases?

11. Does the sample contain a single component or is it a complex mixture?

12. Is a component separation procedure required?

13. What sampling procedure will be employed?

14. Is there a limitation on the size of the sample?

15. Can the sample be consumed by the analysis or is a nondestructive test needed?
16. What are the required number of samples to be analyzed?

Once the required instrumentation and sampling procedures are defined, there are other
important considerations which can be used to finalize the overall approach for chemical
fingerprinting of a particular material. These considerations are:

a.) the availability of the required resources,
b.) the variability of the equipment,

c.) the required sample turn around time,

d.) the skill of the personnel,

e.) availability of off-site analyses,

f.) and the costs associated with the analyses.

The ultimate fingerprint strategy will be dictated by the material's complexity. A simple

material might require a single analytical method, while a complicated formulation
might require a number of instrumental techniques or tandem techniques.
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Example 1. Single analysis for simple material.

This point can be illustrated using a gas chromatographic analysis with a flame
ionization detector for a simple material. Figure 3 is a chromatogram of a simple
material, the solvent reducer of an epoxy paint. This sample is a two component
mixture containing chemically similar components (solvents) both present at high
concentrations (>10%) as pictured below.
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£ C SOLVENT #2
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Time

Figure 3. Gas chromatogram of a simple material.

For most purposes, this fingerprint completely characterizes the material both
qualitatively via retention times, and quantitatively via integrated peak areas.
Contaminated material will show other peaks. Once it can be shown statistically that
the above fingerprint satisfies the requirement for determining the consistency of the
material, it then becomes usable as the signature for the material.

Example 2 . Multiple analyses to characterize complex materials

On the other hand, an example of a complex material can be given with a urethane
modified isocyanurate rigid foam formulation. This material is produced from a two-
component system in which the A component is a diisocyanate mixture and the B
component is a mixture of polyols, catalysts, and other additives. These two
components are combined together in a specific ratio to produce a rigid foam product.
The complexity of the foam ingredients can be represented by the ingredients shown in
Figure 4 on the following page.
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Figure 4. Schematic of a complex formulation for foam preparation.

This type of process requires a considerable amount of chemical fingerprinting to
insure the integrity of the materials used for producing the final product. Consequently,
it provides an example of the worst case in terms of complexity and difficulty in
implementation of chemical fingerprinting. On the other hand, the rewards for
successful implementation are high also. The many many benefits described in chapter
one are particularly rewarding when used for this type of process or materials.

The complexity of this type of material can be further demonstrated when one
Jooks at the types of fingerprints which might be used to analyze the material. Since it is
a multi-component organic material, chromatographic techniques are frequently
considered to be an essential fingerprint technique. The complexity of the material also
presents a problem trying to utilize only one technique for the fingerprint. This example
also illustrates the limitations of a single fingerprint when the number of features which
are characteristic of the material are numerous and difficult to interpret. Once again a
gas chromatography analysis using a flame jonization detector can be used to obtain a
chemical fingerprint of the in-coming material.

Mixture

Intensity

WL

Figure 5. GC/FID fingerprint of a complex material.

Time
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Although the chromatogram for the B component in Figure 5 contains more than
30 peaks (individual substances), this technique only detects the volatile ingredients.
Since less volatile components (polymers, inorganic compounds, etc.) are present,
additional analytical procedures are required to obtain other fingerprints.

Not only is the complexity of the sample important, but also the complexity of
the required information. The amount of information known before the analysis begins
is also important. The analysis of a completely unknown sample requires orders of
magnitude more effort compared to a sample where some background information is
available. The situation of an unknown sample is often encountered when dealing with
materials having proprietary formulations.

Instrumental analyses are beneficial in these situations owing to their ability to
provide objective, quantitative, and diagnostic data on complex multicomponent
materials. Formulation inconsistencies and variations in materials can have a significant
impact on material performance, production processes, and schedule. In addition to the
quality of the major ingredients, the consistency, degradation, and contamination of the
additives, catalysts, and solvents used in the formulation must be known. A complex
mixture or a blend used in foam production can contain as many as twenty-five
components in concentrations ranging from less than 1% up to 60% of the total. The
components may encompass a wide variety of chemistries such as volatile organics,
semi-volatile organics, polymers, or inorganics.

15



2.2 Utilization Areas

Many technical activities can benefit from the application of the fingerprinting
methodology. A few examples will be given.

2.2.1 Receiving Inspection

Fingerprinting methods are well suited to receiving inspection tests due, in part, to their
inherent diagnostic nature. An example is the reactivity of a cured foam in which the
traditional receiving tests required the mixing of two liquid components together in
order to measure how long it takes for the foam to cream, to rise, and to become tack
free. These tests will determine if there is a problem with the material, but will not
uncover the actual cause. Whereas a fingerprint test, a gas chromatograph (GC) of the
catalyst, will diagnose the problem and provide information to solve the problem. The
GC could tell whether the wrong concentration of catalyst was added, whether the
catalyst had degraded, or whether the wrong type of catalyst was used. Figure 6 depicts
a sample that failed with too slow a reactivity. The chromatogram shows that the
stabilizer, peak B, was decreasing in concentration and the degradation product, peak A,
was increasing in concentration. In this case, the catalyst was degrading and appropriate
remedial actions were then performed.
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Figure 6. GC/SIM Detects Degradation of the Stabilizer
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Another example is a vendor formulation change. Figure 7 illustrates how consistent
this material was from 1982 to 1984, then the FTIR spectrum changes in 1985. As part
of the fingerprint studies, the individual ingredients used to formulate the product had
been analyzed, and a reference library established, so that the origin of each peak in the
FTIR spectrum was known. From this information it could be determined which
ingredient had changed.
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Figure 7. FTIR Detects Vendor Formulation Change

Fingerprinting can also detect mislabeled products. One example results from the
activities currently underway to replace certain Freons in industrial processes since some
chlorofluorocarbons have been found to deplete the ozone layer and are being gradually
phased out. A replacement is needed for the Freon which is used as a blowing agent in

17



the foam formulation. New hydrochlorofluorocarbons, HCFC, are being evaluated as
the Freon replacements. A gas chromatographic method was developed to monitor the
new HCFCs and the conventional Freon, as pictured in Figure 8. The GC method
detected a batch which was presumed to have had a new HCFEC to be used for evaluation
studies and, in fact, contained the conventional Freon.
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B New HCFC #1
C Freon
B D New HCFC #2
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Figure 8. GC/TCD Detects Mislabeled Material
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2.2.2 Production

The diagnostic nature of fingerprinting is also beneficial to production. The foam used
for the thermal protection system on the External Tank is sprayed on using two parts
component A to one part component B. Questions arise on whether the correct ratio was
sprayed for subsequent reliable performance. A quantitative method using FTIR was
developed that can calculate the sprayed ratio from a sample of cured foam. A peak

height ratio used to monitor this condition is demonstrated in Figure 9.
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2.2.3 Failure Investigations

Failure investigations benefit from fingerprint analyses, not necessarily with cost
savings, but cost avoidance. When a material is characterized and a reference library is
established, the question as to whether the problem is the material or the process and
what the solution should be is answered quickly. An example is the electrical harness
connector assembly which exhibited an oily residue on the connector face. Fingerprint
analyses were able to identify the composition of the oily residue and trace it to its
source. A number of potential sources were investigated, such as hydrocarbon oils, but
FTIR analysis identified the source to be a silicon fluid (Figure 10) which was used by
the vendor to lubricate the metallic braiding sleeve on the exterior of the conductor.
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Figure 10. FTIR Identified Unknown Contaminant.
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2.2.4 New Material Development

There are many functions fingerprinting can provide in the development of new
materials. One is the stability of the formulation. Fingerprinting can determine if a
specific ingredient is unstable, that is 1) the ingredient is lost due to volatility, 2) the
ingredient degrades, or 3) the ingredient interacts with another ingredient. The
formulator then knows whether to replace an ingredient or to put it into a separate
component to be added when needed. This information can also be used to measure and
increase the shelf life of the material. Correlations between fingerprint tests and
performance properties can be obtained to aid in formulation development.

Example 3. Polyurethane foam insulation determination of the ‘a’ to ‘b’ ratio

An important requirement in the preparation of a cured thermal protection polyurethane
foam material is the control of the 'A:'B' component ratio. An investigation to
determine the true relative amounts of the 'A’ Component (isocyanate) and the 'B'
Component (polyol) has been conducted. In addition, a study of instrumental analytical
methods (FTIR, ICP, and TGA) to determine the true ratio of these components has been
completed. The application of these analytical methods together with the use of
multivariate linear regression techniques permit the determination of the true 'A":'B' ratio
with an error of less than ten percent (10%).

Fingerprinting work performed on these foam material has demonstrated that FTIR, ICP,
and TGA are the instrumental methods best suited to the ratio determination. A single lot
of foam material for which the results from the full complement of acceptance tests were
available was used to prepare accurately weighed "cup” samples (in triplicate) of
0.60:1.00, 0.80:2.00, 1.00:1.00, 1.20:1.00 and 1.40:1.00 'A":'B' ratios. A complement of
"production sprayed" samples were also prepared for correlation analysis. The ability to
produce these samples (cured foam material) from such extreme ratios is a testimonial to
the robust mature of this formulation. The individual samples were then each subjected
to FTIR, ICP, and TGA analyses. Both a forward and backward stepwise multiple linear
regression analysis was performed on the results from each method and on a composite
of all of the results. The resulting predicting equations are of the form:

Z=a+b1x1+b2x2...+bixi

where: Z="A""B'ratio
a = intercept (forced to zero)
b = regression coefficient
X = predictor variable

From the analysis of fourteen wavelengths in the infra-red spectrum, 1510 cm-! and
1067 cm! were identified as the critical predictor variables. These two intensities
remained the critical predictors in the composite regression analysis. Partial "f" tests and
"t" tests confirmed the significance of these two predictors at the 95% confidence level.
The final prediction equation defines a three dimensional planar surface :
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Z = 0.02349x, - 0.02494x,

where:  x, = intensity at 1510 cm!
X, = intensity at 1067 cm'!

Figure 11. Surface defined by analysis of the IR spectrum at
1510 cm-1 and 1067 cm1.

This equation produces an adjusted coefficient of determination r2 = 0.999 and an
interval error estimate of « 0.071 meaning that 99.9% of the 'A"'B’ ratio is explained
over the entire ratio interval with a probable error no greater than 7%. The ICP and
TGA regressions each had a coefficient of determination of approximately 0.95 and
interval error estimates of 0.10 (10%).

Conclusions and recommendations from this study consists of an on-going study to
determine if foam aging has a significant effect on the analytical results. Consideration
has also been given to the expansion of this effort to include the correlation of the foam's
physical and mechanical properties to both the 'A"'B' ratio and its analytical predictors.
Alternatively, the knowledge gained in this study could be applied to the adjustment of
some or all of the major material or process factors to produce the desired 'A":'B; ratio.
It is now possible to accurately determine whether, in the foam application process, the
desired 'A™'B' ratio has, in fact, been achieved. FTIR analysis, in particular, revealed
that the ratio of infra-red light absorption be a pulverized sample of foam at 1410 cm™!
and 1067 cm! is a direct measure of the relative amounts of the 'A’ and 'B' components
reacted to form the cured foam.
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2.2.5 New Supplier Certification

There are situations when a vendor cannot or no longer wants to supply a product or has
changed ownership or the product is produced at a new site. On such occasions, the
product delivered by a new supplier needs to be certified. Fingerprinting can increase
confidence and decrease certification cost by comparing the new material to a
fingerprint data base established for the past product. An example of this occurred when
a material changed both ownership and processing location. A data base using
quantitative fingerprint parameters was established for ten lots of material supplied by
the original vendor. Where possible, reference libraries were compiled on materials
supplied by both the primary vendor and sub-tier vendors. When the first lot was
received from the new vendor, the color of the material was different, thereby raising
questions about the new supplier. Using fingerprint data, it was determined that the
problem was caused not by the new owner and location, but by an established sub-tier
vendor.

2.2.6 Waste Management

Every manufacturing facility which falls under the juridiction of the Environmental
Protection Agency must comply with CFR 40 in controlling wastes that may endanger
the environment or health of mankind. In particular , CFR 40, Part 262 provides specific
instructions on "Standards Applicable to Generators of Hazardous Wastes". Each
manufacturer that disposes of materials used in the manufacturing opertions must
understand and comply with these instructions or face potentially heavy penalties for
failure to comply.

The major component of CFR 40, Part 262 is that the generator of wastes must know
whether or not he is dumping hazardous materials into the environment. Once that
assessment is determined and acknowledged, then proper procedures are established to
allow for removing the waste materials from the facilities. Note that a complete
knowledge of the waste materials leaving the facility is necessary in order to ensure
against any subsequent environmental events at disposal sites creating a perception that
the facility was not knowledgeable about the composition of its waste materials or that
the facility was not in control of the materials leaving the facility. It is also important to
remember that once a hazardous material is identified in the waste materials from a
facility, then compliance with Department of Transportation regulations are also
required. In addition to the federal regulations described in CFR 40, there are also a
number of state and local regulatory bodies who may require stringent control of waste
materials, with similar potentials for heavy penalties when compliance is not attained.

The organizations who have chemical fingerprinting programs in place have a built in
buffer to deal with these types of issues. For one thing, the facilities' materials are part of
the chemical fingerprint database and the organization will always have data to
substantiate their waste materials lists. The legal ramifications of inadequate waste
management can cost heavily in running a manufacturing facility. It is important for all
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NASA contractors and sub-contractors to develop adequate chemical fingerprinting
capabilites to avoid unnecessary environmental issues
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3.0 METHODS DEVELOPMENT
When developing an analytical method, a number of steps need to be considered:

Define the analytical problem

Determine representative sampling techniques

Develop techniques to prepare samples and separate interferences
Develop instrumental method

Control environmental factors

Select methods of standardization

Utilize statistical methods to evaluate data

NeownhAwbn =

The objective of the analysis is to extract the desired information from the sample and
compile it in a usable format. Note from the list above that instrumentation is only one
step of the total method. Potential sources of error need to be identified for the entire
process. Inadequate attention to any one of the steps listed could render the results
meaningless. Also note that the preparatory steps are as important and may be more
difficult and time-consuming than the instrumental analysis step.

3.1 Defining the Problem

The analytical problem must first be defined. Determinations need to be made about the
nature of the problem, how the analytical results will be used, what species are to be
analyzed, and what information is required. The needed data may be qualitative or
quantitative. The identification of one or more components in a sample is qualitative
data, whereas the determination of the amounts is quantitative data. For quantitative
data, parameters such as required accuracy, precision, and detection limits are needed
along with an estimate of the analyte's concentration. Other considerations are outlined
in section 2.1.

3.2 Sampling

he composition of the sample must represent the bulk of the material from which it was
taken in order to yield meaningful information. It can take a lot of effort and time to
obtain a representative sample when the bulk is large and inhomogeneous. Analytical
data quality is critically dependent on the validity of the sample and the sampling
program. Care must be taken to minimize uncertainties in the sampling processes or in
the storage, preservation, or pretreatment of samples prior to analysis. Poor analytical
results may be caused by a number of factors. Examples are contaminated reagents,
biased methods, analyst errors in procedure or data handling. Blanks, standards, and
reference samples can be used to control most of these error sources. However, neither
a control nor blank will solve the problem of an invalid sample.!

The composition of the sample must be considered. Depending on the problem either
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homogeneous or heterogeneous samples may be sought. With a homogeneous sample
every conceivable sample has essentially the same composition, whereas with a
heterogeneous sample the composition varies. Additionally, there are different types of
heterogeneous samples. The heterogeneity may be of a general nature, or the samples
may be different somewhat, but also have within-strata variability such as physically
discrete layers. Thirdly, an otherwise homogeneous sample may consist of localized
areas, pockets or individual items scattered throughout the matrix.2 A decision must be
made on what constitutes the sample population and what doesn't. The analyst must be
cognizant of phase separations, demulsification of emulsions, the plating out of
suspended matter and similar problems. At times homogenization may be needed to
eliminate subsampling variability problems between laboratories, individuals, or occa-
sions. Techniques can range from simple mixing to grinding or blending.

Sample stability may also need to be considered. Once the sample is removed from its
environment, its composition may change due to kinetic effects, container interactions,
radiation, air, and more.2 For example, adsorbed moisture in some solid samples may
need to be removed. Otherwise the percent composition of the material may depend on
the humidity of the environment at the time of analysis. Proper procedures must be used
to store and preserve both samples and standards. Possible dilution or contamination
must be avoided. Samples may also need to be analyzed within a safe holding period.
Consideration must be given to interactions between other constituents, walls of the
container or transfer lines. The samples must be properly handled, labeled, and
documented to avoid substitutions, mislabeling or accidental confusion. Throughout the
sampling and subsampling procedures, the integrity of the results must be maintained.
Take the example of insulating foam on a metal substrate. The foam is applied by
multiple passes, thereby causing discrete layers called knit lines. The foam on the
outside is exposed to environmental factors such as temperature, humidity, or UV
radiation. The outer layer is, therefore, different from the inner layers. The question
then becomes: what is a representative sample and will different labs define a
representative sampling differently?

An acceptable sampling program will include:

1. A statistical design which accounts for the goals of the studies and
its certainties and uncertainties.
2. Instructions for sample collection, labeling, preservation, and
transport to the laboratory.
3. Personnel training in the specified sampling techniques and
procedures.

Holding time (See Figure 12 below) can be defined as the maximum period of time that
can elapse from sampling to measurement before significant deterioration can be
expected to occur2. The following statistical procedure is suggested to evaluate holding
time. A sufficiently large quantity of typical sample is held under a condition of storage
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and/or preservation for a period of time. Increments are withdrawn at the beginning
and at intervals and measured in duplicate. The differences of the duplicate
measurements allow estimation of the standard deviation of measurement. The smallest
difference in two measured values that is significant at the 95% level of confidence is
2(2)12 s, which is approximately equal to 3s.
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Figure 12 Estimation of holding time (as defined in reference 2).

3.3 Procedures

Procedures can be discussed in terms of
a. pretreatment
b. controls and calibration checks.

Before actually analyzing the sample, it is sometimes necessary to perform some form of
separation or sample pretreatment. The sample may need to be homogenized prior to
subsampling or analysis. The pretreatment may involve physical operations such as
sieving, blending, crushing, or drying. For example, the KBr used to make pellets for
the analysis of solid materials by FTIR needs to be dried before using. The analytical
technique may require that the analyses be performed on solutions of the sample. This
preparation step may be a difficult and time consuming task when solvents don't exist
for some materials such as high molecular weight polymers. Interferences may need to
be removed, or analytes may need to be concentrated to reach the desired range for
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analysis. Chemical operations may involve dissolution, fusion, separation, dilution,
concentration, chemical derivatization, or addition of preservatives, standards, or other
materials. Care must be taken to not change the analytes concentration or to introduce
contaminants or interferences. The contaminants can be introduced by a number of
sources, such as the container, reagents, equipment, atmosphere, environment, or added
internal standards. For example, the chemical environment may affect the stability of
the analyte through evaporation of the analyte itself or evaporation of a solvent, thereby
causing concentration of the analyte. The temperature or pH may need to be controlled.
To reduce sources of error, the number of procedural steps and manual operations
should be kept to a minimum.

Once an instrumental method has been developed, and before generating data for use,
preliminary tests must be performed to demonstrate competence. These will include
controls and calibration steps to identify and prevent sources of error, evaluation of
acceptable precision and accuracy, a minimization of contamination and interferences,
and detailed procedural documentation to enable multiple analysts to achieve replication
of results. Proper standardization of the instrument is mandatory for accurate analysis.
The standardization method needs to be suitable for a particular procedure and may
include calibration curves, standard addition, external standards, or internal standards.

A calibration curve is a plot of the instrument's response to standards of known
composition versus the concentrations of these standards. A good rule of thumb for the
initial curve is triplicate analysis of five (minimums of three) different concentrations
which bracket the expected concentration of the analyte. Calibration must be performed
using the same conditions to be used for the sample analysis. The matrix composition
for the standard solutions must be as close as possible to the actual samples. Periodic
checks or repetition of the calibration curve must be performed to detect any changes in
instrument response. These checks should entail one reagent blank and one standard at
a level expected in the samples. If the results of the verification are not within «10% of
the original curve, a new standard should be prepared and analyzed. If the second
verification is not within <10% of the original curve, then a reference standard should be
analyzed to determine if the problem is with the standard or the instrument. The purity
of the standard must be known and a purity of 99.5% or better is recommended. If the
purity is less than 98%, the appropriate correction factor must be included in all
calculations of standard concentration. New standards should be prepared on a quarterly
basis at a minimum and more frequently for analytes with shorter shelf lifes. Proper
preparation, storage, and handling of standards is very important.

The method of standard additions compensates for physical and chemical interferences
of the sample matrix. It is necessary that the calibration be linear over the range of
interest and have a zero intercept. The analyte signal must be corrected for any
background signal. In standard additions a known concentration of the analyte is added
to the previously analyzed sample (spike) and the analysis is repeated using identical
reagents, instrument parameters, and procedures. Analysis of a minimum of two spiked
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samples along with the unspiked sample is recommended in which additions of the
analyte equal twice and half the amount of analyte in the original sample. Spiked and
unspiked samples should be diluted to the same final volume so that any interferent in
the sample matrix would effect each solution identically. Sufficient time should also be
allocated to reach solution equilibrium between the spiked standard and matrix
interferences. The instrument response of each solution is plotted versus the
concentrations of analyte added to the sample solutions, graphically represented in
Figure 13.
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Figure 13 Method of Standard Additions

The concentration of the unknown sample is derived graphically by extrapolation to zero
response on the negative X axis. This method is extensively used in atomic absorption

and flame emission spectroscopy and electro-analytical chemistry.

The internal standard method compensates for differences in the physical properties of a
group of samples with the same analyte. An example of these variables would be the
injection volume from sample to sample in chromatographic analyses. When selecting
an internal standard for a particular method, there are several properties that the internal
standard should have. The concentration of the internal standard in samples and
standards must always be the same. Its chemical and physical properties should be as
similar as possible. The compound should be stable, be of a known purity, and have as
low a toxicity as possible. The measurement of the internal standard should not be
affected by method or matrix interference. The internal standard should be of the same
order of magnitude as that of the analyte. The response should not interfere with the
response of the analyte, therefore, it should not be indigenous to the sample. With these
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limitations, no internal standard can be chosen that is applicable to all samples. For a
multi-component sample, often more than one internal standard will be needed. This
method is often used in gas chromatographic analysis with the additional
recommendation that the retention time of the internal standard be close to the retention
time of the analyte. In the method a fixed known amount of a pure compound, the
internal standard, is added both to the samples and the standards. The response ratio is
the response of the analyte divided by the response of the internal standard. A
calibration curve is established by plotting the response ratio as a function of the analyte
concentration. '

3.4 Quality Control

When using fingerprinting as a quality assurance tool, fingerprint measurements
themselves need their own quality assurance program to ensure reliable data.* Each
laboratory should have a formal quality control program, which covers the entire
analytical measurement system, including sampling measurement, calibration and
quality assurance. When developing the program, other factors such as time, resources,
and sample availability need to be considered and may necessitate compromises. To
bring this all together it is important to have interaction between and within the various
departments which have the individual expertise in chemical analysis, statistics and
production.

There should be an initial demonstration of the laboratory’s capability for the fingerprint
method and an ongoing analysis of quality control samples to evaluate and document
data quality. The characteristics of the method must match the measurement
requirements. The laboratory should determine that the method has adequate:

sensitivity
selectivity
accuracy
precision

These characteristics will be covered in detail in the chemometrics section. There are
other desirable characteristics that the method should have, including:

large dynamic measurement range
ease of operation

multiconstituent applicability

low cost

ruggedness

portability

Once a method is developed and subsequently adopted it must be used in a reliable and
consistent manner to ensure that reproducible data are provided. The best way to
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implement the method is to document it in detailed written procedures.

The objective of a quality assurance program for analytical measurements is to reduce
measurement errors to tolerable limits and to provide a means of ensuring that the
measurements generated have a high probability of being of acceptable quality. Quality
control is the mechanism established to control errors, while quality assessment is the
mechanism to verify that the system is operating within acceptable limits. Reference 4
provides a thorough discussion of these concepts.

The quality needed for the fingerprint measurement is relative. What may constitute
high quality in one situation may be unacceptable in another. For example, if the
purpose of the method is to calculate the concentration of catalyst in a formulation and a
change of 5% will affect the processing properties unacceptably then the variance in the
measurement itself must be less than 59 The error that is tolerable for each property to
be measured must be first established based on the judgement of the end user. These
tolerance limits must be the best estimate within which the "measured property must be
known to be useful for its intended purpose.” The permissible tolerances in
measurement error can then be established after the tolerance limits for the measured
property has been determined. The measurement system must be in a state of statistical
control to provide the basis for establishing confidence limits that are reliable for the

data input.
A list of elements to assure the quality of the fingerprint data are:3

1. Maintenance of skilled personnel, written and validated methods,
and properly constructed, equipped, and maintained laboratory facilities.
Provision of representative samples and controls

Use of high-quality glassware, solvents, and other testing materials
Calibration, adjustment, and maintenance of equipment

Use of control samples and standard samples, with proper records
Directly observing the performance of certain critical tests

Review and critique of results

Tests of internal and external proficiency testing

9. Use of replicate samples

10. Comparison of replicate results with other laboratories

11. Response to user complaints

12. The monitoring of results

13. Correction of departures from standards of quality.

N

The following quality control samples and procedures will be discussed and are
recommended for use:

Standard Reference Materials (SRM)
interlaboratory comparisons
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multiple instruments
blanks

replicate samples
spiked samples
control charts

An evaluation sample can be defined as any test sample that is used to evaluate any
aspect of a measurement process. There are three requirements for the evaluation
samples. First, the matrix of the evaluation sample must match the sample of interest so
that the composition of the sample and the kind and level of minor constituents and
impurities that could be present are equivalent. Second, samples must be reasonably
homogeneous so that subsamples have an insignificant variance of composition. The
third requirment is that the samples should not show any significant deterioration or
change in analyte level during the time interval expected for use.?

A good rule of thumb, when determining the amount of analyses for fingerprinting
quality control (laboratory QC) expressed as a percentage of the overall analysis, is 10%
- An additional 5% should be added for field QC when appropriate.

3.4.1 Standard Reference Materials

Standard Reference Materials are materials for which the properties and composition are
certified that they can be used to monitor data accuracy. For such the source,
composition, and standard purity must be established. The standard purity must be
documented and possible interferences or time dependence of the composition must be
known. The stability of the reference material is just as important as the certified value.
Resources of these materials and information are:

National Institute of Standards and Technology (formerly U. S. National
Bureau of Standards)

U. S. Environmental Protection Agency

U. S. Food and Drug Administration

U. S. Department of Agriculture

Commercial sources

Reference 5 focuses on "Standard Reference Materials and the Goal of Accuracy."
Standard Reference Materials (SRMs) can be obtained for a diversity of materials from
alloys to foodstuff to polystyrene spheres (manufactured on the space shuttle). To
obtain these materials is just the first step; they must subsequently be used properly and
their limitations understood. When using SRMs it is important to distinguish between
precision and accuracy.

The accuracy of the data can be confirmed by SRMs. Accuracy is the degree of
agreement of a measured value with the true or expected value of the quantity of

32



concern. Precision is the degree of mutual agreement characteristic of independent
measurements as the result of repeated application of the process under specified
conditions. Precision then gives no indication of how closely a set of measurements
approaches the true value. One can have a set of measurements that are extremely
precise, but also extremely wrong.? Therefore, SRMs are needed for accuracy
determination despite the precision of instrumental methods today. In fact the precision
of a specific experiment can be better than the certainty estimates that accompany each
SRM. This is due to material nonhomogeneity and for the material being studied, the
extent and type of nonhomogeneity must be understood before using an SRM. The
nonhomogeneity of the SRM should also be considered. The SRM should be used after
the analytical method is shown to be in a state of statistical control. Precision should be
established as a prelude to accuracy. Note, since SRMs can be expensive and available
in limited amounts, their use is discouraged when demonstrating the statistics of the
measurement process, so other materials should be used.

When choosing an SRM, the composition of the standard must simulate the composition
of the samples to imply that an accurate measurement of the standards equates to an
accurate measurement of the sample. The reference material should simulate the actual
sample with respect to both the matrix and the level of analyte. The protocol used on
both the standard and the sample must be the same and no special care must be taken in
analyzing the standard other than that usually used. In some cases, a single reference
material may not completely diagnose a measurement systerm. There may be a need for
several reference materials that differ in the analyte level to assure the absence of
significant bias throughout the concentration range of interest or to identify its nature if

found.
3.4.2 Interlaboratory Comparisons

A laboratory can demonstrate close agreement with acceptable levels of accuracy by
participation in interlaboratory comparisons. Another needed comparison is multiple
operator variability. Interchange of operators and apparatus/equipment can be used as a
quality assessment technique.

3.4.3. Multiple Instruments

Comparison tests may be performed on different analytical techniques to assure the
analyst that neither positive nor negative interference effects are operative, thereby
distorting the accuracy of the reported values. An important utilization is the quantifi-
cation of elemental content when a new or unusual sample matrix is encountered. For
example, comparison tests may be performed between Inductively Coupled
Plasma/Atomic  Emission Spectrometry (ICP/AES) and Atomic  Absorption
Spectroscopy. ICP/AES results can be affected by physical or chemical interferences
that are highly dependent on matrix type and the specific analyte element. Another ex-
ample is gas chromatographic analysis using a flame jonization detector (GC/FID) in
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which multiple compounds are indistinguishable because they elute at the same time, or
a higher concentration analyte masks a lower concentration analyte and the result for
either case is a single peak. This problem can be circumvented by confirming the lack
of coelution or the identity of the coelutant by GC analyses using a mass spectrometric
detector.

3.4.4. Blanks

A good discussion on analytical blanks can be found in Reference 6. The analytical
blank can be defined as contamination from all sources external to the sample. How
well the blank can be controlled will greatly affect the accuracy of low-level trace
determinations. In high-accuracy analysis, the blank will also affect the accuracy that
can ultimately be obtained. The sources of the blank are variable. This variability
determines the uncertainty of the blank correction and often the lower limit of the trace
concentration that can be determined with reliability. Therefore, the variability of the
analytical blank must be controlled in order to improve the accuracy and lower limit of
trace determinations. To reduce the size of the blank, the sources of the blank must be
controlled.

The analytical blank is a result of contamination from four main sources:

the analysis environment

the reagents used in the analysis
the apparatus used

the analyst performing the analysis.

Whenever a blank contribution is significant, the quality control program must give
special emphasis to blank control. When performing analyses on an analytical batch,
each batch should be accompanied by a reagent blank. The analytical batch can be
defined as a set of samples which are analyzed together by the same method sequence
using the same lot of reagents handled with the same manipulations and analyzed within
the same time period or in continuous sequential time periods. For measurement
purposes, the sample that is measured as the blank is an artificial sample designed to
monitor artifacts that are introduced into the process.

A reagent blank is prepared from an aliquot of analyte-free water, solvent, or matrix that
contains all constituents except the sample. The reagent blank is carried through the
entire analytical procedure. If the procedure calls for the addition of internal or
surrogate standards to the sample, they are likewise added to the blank. If acids or
chemical preservatives are used, the same quantity of preservative should be added to
the blank as normally would be added to the sample. (Note: Some texts will
differentiate between a reagent blank and a method blank.) As such, the reagent blank
consists of each reagent or solvent used in a given method of analysis. The method
blank determines whether the cumulative blank interferes with the analysis and is

34



determined by following the procedure step-by-step from sampling to detection,
including all reagents and solvents in the quantity required by the method). To calculate
the "true” concentration of the sample, the value obtained for the method blank is
subtracted from the value measured for the sample. In some cases field or equipment
blanks are necessary and are included as one of the cumulative contributions to the
method blank. Field blanks are aliquots of analyte-free water or solvents brought to the
field in sealed containers and transported back to the laboratory with the sample
containers. Equipment blanks may be needed to check the cleanliness of the sampling
device and as such they are opened in the field and the contents are poured, as
appropriate, over or through the sample collection device, collected in a sample
container, and returned to the laboratory as a sample.

To help the analyst to control or reduce the blanks, causes or recommendations will
now be discussed.

Environment Ways to control the environment can range from good housekeeping
practices to conducting all operations in a clean room. There are a variety of clean
benches and enclosures that can be purchased to provide clean areas to carry out specific
operations.

Reagents All the chemicals that may contact a sample can add to the reagent blank. In
cases where the sample needs to be dissolved or extracted, then large quantities of
chemicals are involved and can make large contributions to the reagent blank. Even if
the chemicals are relatively pure, care must be taken especially when trace analyses are
conducted. Water or non-aqueous liquids that are used to dissolve, dilute, or wash can
add to the blank. To obtain reproducible blanks, both the quality and quantity of
reagents need to be known and controlled. The chemicals used should be recorded and
a set of measurements should be made for each manufacturing lot.

Apparatus The apparatus that is used can add to the blank especially if chemical
operations are involved. There may be a number of apparatuses used if there are
multiple steps such as recrystallization, precipitation, distillation, extraction, or washing
with an appropriate solvent. Both positive and negative blanks can result from such
things as glassware, bottles, filters, mortars, sieves, stoppers, syringes, shakers, septa,
and transfer lines. Positive blanks would involve additions such as contaminants from
storage bottles. Negative blanks would be removal or losses such as irreversible
absorption of trace metals on glassware, or organics on chromatographic columns.

To control apparatus blanks, care must be taken in choosing the materials, i.e., a specific
grade of solvents, and controlling the areas where the work is being performed. In some
cases a piece of equipment or a specific facility must be dedicated exclusively to a
particular sample or a narrow concentration range of the analyte. For example, in
quantitative trace levels of elements, glassware used for high concentration standards
should not also be used for low level standards. Another example is separate facilities
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for volatile and semivolatile organic analyses in which extractions with methylene
chloride for semivolatile analysis should not be done in the same vicinity as volatile
analysis since in volatile analysis methylene chloride is one of the analytes measured.

It is important to write and consistently follow procedures for cleaning and/or
conditioning the instrument, glassware, storage bottles, sample containers, and transfer
lines. Storage after cleaning needs also to be controlled. Special care must be taken if a
central location is used for cleaning. The use, cleaning, and storage of specific items
must be pre-identified and followed otherwise all items cleaned in the central facility
must be cleaned according to the method with the most stringent requirements.

Analyst Contamination or sample loses can result from the physical contact of the
analyst, or the garments that are worn. An example frequently encountered are gloves.
Organics such as phthalates can be extracted from the gloves and subsequently
contaminate the sample during cleaning or sample manipulation.

When measurements are getting close to the limit of detection, blank corrections become
increasingly important. A small variability of the blank can have a major effect on the
sample value. A question often asked is what constitutes an acceptable limit for a blank.
The accurate evaluation appears more important than the absolute value of the blank,
however, for good measurement practices the value should be kept to a minimum and
within reasonable limits. A good rule of thumb in the case of trace analysis is to limit
the blank correction to no more than ten times the acceptable limit of error for the
measurement and, also, that it should never exceed the concentration level expected in
the sample.6

Whenever an analysis is made, a method blank should be determined. How many
blanks to run is determined by the method of analyses and the number of samples being
analyzed at a given time. For example, in a gas chromatographic analyses of
semivolatile organics, a blank is run with each series of samples analyzed. If all
procedural steps are the same for the series of samples then analyzing one blank for
every nine samples is a good rule of thumb. However, if a calibration is changed or
reagents are changed or some other procedure step is changed, then another blank will
need to be analyzed representative of the change resulting in a greater frequency of
blanks analyzed.

3.4.5 Replicate Samples

A replicate sample is prepared by dividing a sample into two or more separate aliquots
and analyzing each aliquot. Duplicate samples are considered to be two replicates.
Some texts will differentiate between split samples and replicates, when duplicate
samples are collected (replicates) versus when a representative subsample from the
collected sample is removed (split samples). Replicate sample analyses will assess the
precision of the method. A good rule of thumb is to analyze a duplicate with each
analytical batch or once per twenty samples, whichever is the greater frequency.

36



3.4.6 Spiked Samples

Either a sample or a blank can be spiked with a predetermined quantity of a stock
solution of analyte. A matrix spike occurs when the actual sample matrix is spiked. A
check sample is a blank which is spiked with the analyte to monitor the execution of the
analytical method. Spiked samples are effective for the analysis of samples by gas
chromatography, liquid chromatography, ion chromatography, gas
chromatography/mass spectrometry and inorganic analytes. Another type of a spiked
sample is the surrogate spike. The difference between spikes and surrogates is that
spiking refers to the addition of the analyte 10 be measured to a sample, while 2
surrogate is a different substance which has the same measurement properties as the
analyte of interest. Surrogates should be chosen with care with the best ones being
labeled analytes, isotopes, and isomers. Surrogate spikes are used in the environmental
chromatographic analysis of organics. Here surrogates are organic compounds which
are similar to the analytes of interest in chemical composition, extraction behavior, and
chromatography, but which are not normally found in environmental samples. Often
deuterated compounds are used. All blanks, standards samples and spiked samples are
spiked with the surrogate compounds prior to analysis. The percent recovery is
calculated for each surrogate. The advantage of surrogate spikes is that it checks the
accuracy of every sample analyzed. This is important in multistep methods where
problems could occur from multiple sources such as sample loss during extraction or
concentration, septa or column leaks, error in injection volume, and cold spots in the
chromatographic transfer lines, just to name a few. This is especially true when needing
reliable measurements at very low levels.

The recovery of the method is derived from measuring spiked samples. The
recovery is determined by the equation:

C(found
% recovery = E%fdi::—dl) x 100

where C(added) is the known added concentration of the analyte and C(found) is based
on the net analyte signal for the spiked sample.

The objective of spiking is to determine the extent of matrix bias or interference on
analyte recovery. Spiked samples provide a proficiency check for accuracy of
analytical procedures. Like replicates, the same rule of thumb for analysis frequency
holds: one spike with each analytical batch or once per twenty samples.

3.4.7 Evaluation Samples

Considerable care must be taken when preparing evaluation samples. The method
of choice is gravimetric addition because volume additive effects can be significant
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when using volumetric procedures. (Note: In environmental organic analysis, surrogates
are often added by volume using a syringe; however, the volume of surrogate relative to
sample volume is negligible.) To prepare evaluation samples by blending, either
measured amounts of the components or a dilute mixture of the analyte is added to a
measured amount of matrix. Specifically, how liquids, solids, and gases are handled
follows.2

3.4.7.1 Liquid Samples

Even though miscible liquids blend perfectly, the analyst must be careful that the
method of addition doesn’t cause stratification of the constituents. For example, if two
liquids differ a lot in density, then layers could result from bulk additions of one liquid
into another. Multilayers may not be detected in opaque containers or if one additive is
especially small in volume (i.e., 10 L of surrogate spiked into 10 mL of sample).
These problems can be taken care of by always ensuring that there is careful and
adequate mixing.

3.4.7.2 Solid Samples

A solid sample can be spiked by addition of either a solid or a liquid. One problem
that may be encountered is after the solvent evaporates the analyte may deposit in a
localized area of the matrix. Uniform mixing in this case may be difficult. Likewise
uniform mixing of a small amount of one solid with a larger amount of a second solid is
difficult. In both cases, consumption of the entire mixture may be advisable.

3.4.7.3 Gas Samples

To blend gases statically, quantities can be mixed together that are measured
gravimetrically, volumetrically, or manometrically. To completely mix gases will take a
considerable amount of time, especially if there are disproportionate quantities.
Consequently this method is rarely used when working with trace amounts of analyte.

A better way to produce gas mixtures is to dynamically blend two gas streams
together with careful control and measurement of the flow rates. In the design of the
blending system, there should be turbulence at the point of mixing.

3.4.8 Control Charts

Measurements of replicates, spiked samples, and surrogates can best be interpreted using
control charts. The result of a quantitative chemical analysis (fingerprint) is a
measurement (stated as a number) of a property of the sample(s). Since variation is ever
present, the measurement must include an estimate of the errors inherent in the
determination. The quantification and minimization of these errors is at the heart of the
quality assurance effort and are a never ending activity. A very effective approach is to
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consider the analysis to be a process and employ the methods of Statistical Process
Control (SPC).

Statistical process control has created a profound and fundamental shift in emphasis
from defect detection (Quality Control) to defect prevention (Quality Assurance). The
basic tools of SPC are control charts which are originated, used, and maintained by the
process operator (analyst). They provide visual quantitative information on the current
state of the process as well as a performance record over time (trends). Utilizing the
chart, potential problems can be detected and corrected before the process performance

is impaired.

The control chart is a pair of graphs which present consecutive determinations of means
(averages) of sample measurements (fingerprints) and an associated estimate of the
variation (usually the range or standard deviation). On both graphs there is a central
horizontal line which is the grand average of the data used to establish the chart (Figure
13). It is necessary to collect as large a number of observations (not less than 50) as
possible in order to obtain an adequate estimate of these means. This initial activity has
the additional advantage of providing (frequently for the first time) an accurate picture
of the measurement capability of the analytical process. This initial evaluation is known
as a "Process Capability Study" and is a critical step in establishing control of the
process. If the process capability study demonstrates that the process is not within the
required limits, action must be taken to improve the process and then be followed by a
new round of data collection. In any case, the data collection should consist of a
number of "runs” of fixed size (3 - 6) which is dictated by the nature of limit lines
(Figure 13). These lines are based on multiples of the “standard error of the mean”
added to (upper lines) and subtracted from (lower lines) the grand average. Once
established, the chart is maintained by plotting the mean and range or standard deviation
computed from the same fixed size "runs" used to set the control line values.
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_______________ Action Line
——————————————— Warning Line

R v&/—‘\\’\”\ (Grand Average)

Time or Sequence —_—

Figure 13 Example of a Control Chart

For complex instrumental analyses it may be desirable to use several control
charts. For example, in gas chromatography, using a selected standard sample, retention
time, peak area, and column resolution may each be the subject of a control chart. The
proper application of SPC control charts promotes statistical awareness, facilitates
control and maintenance, provides a graphic history of process variation, and most
importantly, becomes a tool for constant improvement.

3.5 DATABASE COMPILATION

The fingerprinting of a complex material is necessarily dependent on the analysis
of a large amount of chemical data. These data must be conveniently accessible to the
analyst in a form suitable for study and exploration with the aid of a computer. Since
the analyst is often involved in the treatment of only some of the available data,
extraction of the desired information using selection rules is a valuable capability.

Careful planning of the database format should precede the entry of any
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information. First a decision must be made as to the general kind of information the
database is to contain. For example, if the database is to be used to collect information
from analyses performed on a single analytical instrument, it will probably take the form
of a "Log Book.” That is, it would have an individual record for each sample analyzed
with categories provided for specific data such as: date, start and finish times, method
used, calibration data, standards used, chromatography column, scan parameters,
detector gain, and analytical results (or a reference to the file containing them). The
detailed planning for a "fingerprinting” database should include considerations of at
least the following:

1.  An identification format (name) is needed for the records. This is generally
the sample identification or laboratory account number.

2 Date information (sample received and/or sample completed) should be
identified.

3.  The analytical instrument and/or analyst should be identified.

4. For the analytical results, one category should be provided for each type of
analysis and specify both the numerical result and the units.

5. If the reported analytical result is the mean of several observations, the
number of observations and the standard deviation, coefficient of variation,
or variance should be included.

6. If the analysis was part of an acceptance test, the result (pass/fail) should be
an included category.

7. If the analysis resulted in a rejection of the sample, a category for the
identification of the rejection form should be provided.

8. A category for the notation of any special conditions or circumstances
(remarks) should be provided

9. If the original order of database entry is important, a sequence number
category (which can be used to restore this order) must be provided.

The real benefits of a good database manager program Stem from its ability to
display the same data in a variety of creatively different ways. Given a well planned,
maintained, and accurate database, many ad hoc queries can be made which result in
reports including those based on time intervals, numerical ranges of results, records
containing missing data, reports arranged in chronological order, reports arranged in
ascending or descending order by analytical result and many ordered combinations of
these criteria. The reports, generated by these queries can themselves be made into a
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separate database. Most modern database manager programs make provisions for the
creation of calculated categories which may be used for some data pretreatment in
advance of more complex analysis. The reports generated may also be exported to other
computer programs such as spreadsheets (for additional calculations) and word
processors (for preparation of printed reports) and even to other computers via networks,
modems, or magnetic media (disks or tapes).

Statistical Software

In recent years a number of excellent and exceptionally extensive statistical
software packages have appeared. These programs can be installed on computer
platforms ranging from rather modest personal computers (PCs) to large mainframe
machines. They offer as many as twenty separate groups of statistical analysis
procedures complete with embedded graphics routines (many in color) and often include
a database management facility with spreadsheet options. The statistical procedures
provided are applicable to a spectrum of analytical and exploratory activities from
business and social sciences to physical sciences and engineering (including applications
in quality and reliability analyses). Many of these programs recognize that, no matter
how complete their procedures are, some users will need to make modifications or
otherwise customize certain applications and, therefore, provide a high level
programming language for this purpose.

Although these statistical programs are very reasonably priced (especially given
their many features), if project resources or the limited statistical scope precludes their
purchase, most of the required programming procedures are well documented in the
available literature and may be entered directly into the PC by the analyst/statistician. In
particular, Volume 4 of “Data Handling in Science and Technology” (see Appendix)
contains most of the required statistical procedures in the form of modules in the BASIC

programming language.
3.6 BASIC RESOURCES

3.6.1 Instruments

Fingerprinting is performed on analytical instruments and as such it is important to
select and purchase reliable instruments. The relative cost of the purchase will dictate
the amount of time and energy to be invested. When choosing components or complete
instrument systems, the following parameters should be considered:¢

Validity of methodology

Versatility

Ruggedness and simplicity of design
Skill requirements

Compatibility with existing equipment
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Availability of service and parts

Reputation and experience of manufacturer

Capability for updating or adding accessories in the event of changes
of technology or in the program of the laboratory

3.6.1.1 In-House versus Subcontract

Analytical instrumentation is complex and costly and preferably requires a skilled
operator, especially during the method development and preventive maintenance stages.
One may, therefore, question whether to set up and perform the task in-house or to
subcontract the work to a specialist laboratory or university. To answer this question a
realistic cost trade analysis is needed.

In addition to a cost estimate, there are many other questions to ask:

Will higher quality data be obtained in-house?

Is the service difficult to obtain externally?

Is there a need to protect the proprietary nature of the method or data so that
it must be done in-house?

What is the required response time and will the response be quicker in-
house?

Do in-house programs have a gap that this capability will fill?

Will this service attract other services that are needed?

Does it provide employment where resulting losses are

compensated by other gains?

How long will the product be needed?

Are there rapid changes in the technology?

Determining quality in third party laboratories is an important issue in aerospace.
Consequently third-party auditing and accrediting of both independedt and in-house
materials testing laboratories is available through organizations such the National
Aerospace and Defense Contractors Accreditation Program at the Performance Review
Institute (sponsored through the Society of Automtive Engineers).

Even with an unfavorable cost estimate, yes ansSwers to certain of the questions
above may be more important and make it necessary to establish an in-house capability.
Another option is a rental or lease agreement.

If services are contracted to an outside laboratory it is very important to ensure that
the laboratory provides the quality of data that is needed.

3.6.2. Personnel Requirements

For a laboratory to generate reliable fingerprint data it is very important that the
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personnel have adequate education and training. The instrumentation used for
fingerprinting is complex, especially during the method development stage such that an
undergraduate education no longer sufficiently trains an analytical chemist. Many
analytical chemists specialize today where one may be trained in chromatography,
another in surface science, and another in elemental analysis. Some further specialize in
one technique, such as a mass spectrometrist. Even analytical chemists with advanced
degrees and/or experience periodically need additional training since the field is
dynamic with technological advances and the introduction of new instrumental
techniques. On the job training must be considered a continuing activity that starts with
new employees and provides reviews for continuing staff.

Recommendations can be made for a skill base with the understanding that
fingerprint programs will differ in size and available resources. The person
implementing the fingerprint program should be a chemist by degree or by experience
with instrumental analysis of organic and inorganic compounds. Preferentially lead
chemists are needed in one or more of the following areas:

Gas chromatography with various detectors (mass spectrometer
especially beneficial)

Liquid chromatography

Infrared spectroscopy

Elemental analysis (ICP/AES especially beneficial)

Surface science

Thermal/Mechanical analysis

These lead chemists nead more than just to be able to run the instrument. Their
experience must cover four categories:

Instrument troubleshooting

Method development

Instrument and accessories operation
Data interpretation

It is mandatory that laboratory personnel understand when an instrument is and is
not generating reliable data. With lead chemists as technical supervisors, then much of
the sample analysis can be performed by degreed chemists with little experience. The
methods, including analysis and calculations, can be automated, but data must be
reviewed by lead chemists.

Another category to be stressed is a thorough understanding of sampling. The
analytical chemist should train the sampling personnel to ensure the sample is worthy of
analyses. A questionable sample could vitiate an otherwise valid measurement program.

Training courses are provided by the instrument manufacturers, universities and
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private companies. Courses are available for each type of instrument that specialize in
areas such as theory, instrument operation and repair, method development or data
interpretation.  Attendance provides opportunities to associate with colleagues, to
exchange ideas, and to receive specific information.  Personnel should also be
encouraged to read technical publications. Most agree that research personnel should
continually update their knowledge, but a more narrow view is usually taken of
analytical personnel in a support function. This should not be the case. The resource
allotment is small to encourage educational and training activities, but can yield
improved measurements and contribute to the continuous outputting of quality data.
Training courses can be included in the purchase contracts for new equipment.

3 6.3. Laboratory Information Management Systems (LIMS)

Analytical effort is always accompanied by volumes of data. Laboratories are
routinely required to control, store, manipulate, and report large quantities of these data.
In the past these data management tasks were accomplished using intensive labor, reams
of paper, manual delivery, and filing cabinets. Manual techniques for lab data
management require a large percentage of laboratory manpower and create a drain on
technical expertise. This need has resulted in a movement to automate data management
for the laboratory environment.

A relatively new tool available commercally for performing these data
management tasks is the Laboratory Information Management System (LIMS). LIMS is
a classification of technical database that is specifically designed to support the
collection and reporting of laboratory data. LIMS technology is a rapidly expanding and
diverse field. A variety of choices awaits the potential LIMS user, but in general, LIMS
provides the capability to collect lab specific data, store the data in a secure central
database, and allow electronic access to the data. Typically data entry is via keyboard,
data storage is accomplished using various computer media, and reporting is handled via
video display or printer.

LIMS technology offers laboratories the opportunity to increase information flow
while enhancing the productivity of data management. Since LIMS provides a rapidly
accessible centralized data storage facility, data can be accessed, manipulated, and
reported in fractions of the amount of time required for manual techniques. Additionally,
computer based data can be accessed and reported automatically using easily
implemented programming techniques thus removing even more touch labor from the
data handling process. Typical lab data management functions that benefit from
productivity enhancement as a result of LIMS implementation include:

. Formatted reporting of laboratory data
. Generation of periodic reports

. Data validation and process control

. Data storage and retrieval
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- Sample tracking and progress reporting
- Management decision making

Advanced LIMS applications frequently further enhance lab productivity by
providing automated capture of test data, interactive data analysis capability, and
automated distribution of lab data.

3.6.3.1. Production Process Database Requirements

Laboratory database requirements vary with laboratory applications. All labs
require collection and storage of sample background and test result data. Some labs,
however, require more extensive support of these and other data. For example
environmental and clinical labs require more exhaustive audit-trail support than do
typical QC labs. Many other requirements for LIMS functionality must be considered.
Requirements typical of an aerospace LIMS applications are delineated below.

3.6.3.2. Data Support
LIMS must be capable of tracking the various types of laboratory data:

Sample Data:
- Sample description
- Sampling information
- Lot numbers
- Special instructions
- Warnings & handling information
- Special codes and designators

Accounting Information:
- Charge numbers
- Analyst and personnel information

Audit Trail Data:
- Time stamps
- Responsible personnel
- Sample location (chain of custody)
- Sample alterations and deletion

Requirement Information:
- Document name and revision
- Analysis requirement range and units
- Result specifications (sensitivity, etc...)

Analysis Data:
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. Analysis results

. Analytical remarks and comments
. Analytical units

. Labor expenditure

3.6.3.3. Flexibility and Tailorability

LIMS must provide the flexibility to tailor applications to the requirements of the
laboratory. This requirement includes the ability to interface "add on" and "third party"”
applications. LIMS administrators must have the ability to alter the database by
changing existing programs or adding new ones to optimize laboratory utilization.
Tailorability is most often necessary for adapting LIMS input and output routines to best
suit laboratory requirements. The ability to tailor applications to specific lab
requirements translates into enhanced database productivity and more efficient
laboratory operation. Typical tailored applications include:

New analytical techniques
All data collection routine
Customized reports and graphics:
. Formatted analysis results
. Management decision support reports
. Technical graphics and SPC applications

Automated capture of test data, that is, interfaced:

. Instrumentation
- Voice Systems
- Data loggers

Automated database maintenance, that is, interfaced database:

- Clean-up programs
. Control programs

3.6.3.4. Security

LIMS must provide for secure entry, storage, and access of laboratory data. Data
handling applications must be controlled so that only specifically identified individuals
within the laboratory structure have access to and control over them. This is imperative
when the laboratory is part of the product or quality assurance function of the company. A
complete audit trail of this access is also necessary. Additionally, access to test results,
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especially intermediate results, by non-laboratory personnel must be strictly controlled. At a
minimum the entry to a LIMS should be password protected and security structuring for
internal applications should be provided. Many tailored applications may generate sensitive
information and should also be protected by security measures. Extreme care should be
taken when the hardware running a LIMS system is LAN or modem connected. LIMS
should never run the risk of exposure to espionage or viruses. Any loss or corruption of lab
data can be catastrophic.

3.6.3.5. The Fingerprinting Subset

LIMS can be employed to support Fingerprinting and other R&D efforts. In general
all database requirements for production LIMS also apply to R&D efforts.

Several special requirements should be considered when developing the fingerprint
subset. These include correlation of receiving inspection tests to production process
analyses for the materials fingerprinted, technical applications in support of fingerprint
decision making, and eventual incorporation of fingerprint applications into the production
process database.

Additionally, a routine analysis result disposition field is also tracked in the fingerprint
subset to show the acceptability of the material with respect to existing analytical
techniques. Specially tailored applications may be required to assist R&D personnel with
identifying and quantifying fingerprint results. Typically these may include listing and
trending results, statistical analyses, and specialized reporting capabilities. Successful
fingerprinting studies will result in new analytical techniques and these techniques must be
included in the production database. Fingerprint applications should be designed to migrate
efficiently into the production database upon acceptance. This is desirable because it allows
for testing of the "new" LIMS applications while they are part of the R&D subset and
provides for rapid assimilation of the accepted fingerprint application into the production
system.

3.7. Intelligent Analysis Support Systems

Knowledge Based Systems commonly known as Artificial Intelligence (AI)
programs or Expert Systems can be used to support many aspects of fingerprinting. Al
programs are used to "capture knowledge" from expert individuals. Captured
knowledge can subsequently be interactively accessed and used by less experienced
employees to get advice from the expert system. Additionally, this access provides the
ability for the "novice" to query the AI program about the line of reasoning used to
provide the advice. Al programs are most frequently used to capture expertise in
demanding or complex operations or where that expertise is critical due to limited access
(only one expert available) or potential for loss (retirement, transfer, attrition, etc.).
Since instrumental analysis exhibits both complex operations and critical expertise
requirements, Al programs make excellent computer based support tools for
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fingerprinting studies. Applied Al programs can enhance the productivity of
instrumental analyses by reducing analytical learning curves, extending "expert” support
of analysis to multishift operations, providing guidelines to expert operators, guarding
against catastrophic loss of expertise, and establishing an analytical baseline for
consistent instrumental investigation.
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AAS
AES
AFS
AA

Al
AMU
ANOVA
ASCII
ATR
AUFS
CC
CFC
CI
CILO
Ccov
CPU
CRT
DF
DOE
DSC
DTGS
ECD
EDS
El

ES
ESCA
ET
FAAS
FAB
FES
FID
FTIR
GC
GC/FID
GC/MS
GLC
GSC
HCFC
HPLC
IC
ICP

List of Acronyms

Atomic absorption spectroscopy

(1) Atomic emission Spectroscopy, (2) Auger electron spectroscopy
Atomic fluorescence Spectroscopy

Atomic absorption

Artificial Intelligence

Atomic mass unit

Analysis of variance

American Standard Code for Information Interchange
Attenuated total reflectance '
Absorbance units full scale

Capillary column

Chlorofluorocarbons

Chemical ionization

Computer Integrated Laboratory Operations
Coefficient of variation

Central processing unit

Cathode ray tube

Degrees of freedom

Design of experiments

Differential scanning calorimetry
Deuterated triglycine sulfate

Electron capture detectors

Energy Dispersive X-ray Spectroscopy
Electron impact

Expert Systems

Electron spectroscopy for chemical analysis
External Tank

Flame atomic absorption spectroscopy

Fast atom bombardment

Flame emission spectroscopy

Flame ionization detector

Fourier transform infrared spectroscopy
Gas chromatograph

Gas chromatographic with a flame ionization detector
Gas chromatography/mass spectrometry
Gas-liquid chromatography

Gas-solid chromatography
Hydrochlorofluorocarbons

High performance liquid chromatography
Ton chromatography

Inductively coupled plasma
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ICP/AES
IEC
IR
IRE
ISS
LAN
LC
LLC
LIMS
LHDS
LNTB
LSC
MAD
MAPTIS
MCT
MR
MS
NMR
NPD
NP
NS

P

PC
PMT
QC
QEL
QLI
QMA
RDS
RI
RP
SA
SAM
SEC
SEM
SFC
SIMS
SIM
SOP
SPC
SRM
TCD
TED
TGA
TMA
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Inductively coupled plasma/atomic emission spectroscopy
Ion-exchange chromatography
Infrared spectroscopy

Internal reflection element

Ion scattering spectroscopy

Local area network

Liquid chromatography
Liquid-liquid chromatography
Laboratory Information Management System
Laboratory Host Data System
Laboratory Network Test Bed
Liquid-solid chromatography

Mean absolute deviation

Materials and Processes Technical Information System
Mercury cadmium telluride
Midrange

Mass spectrometer

Nuclear magnetic resonance
Nitrogen-phosphorus detector
Normal phase (LC term)

Nonpolar stationary phase (GC term)
Polar stationary phase (GC term)

(1) Personal computers; (2) Packed column (GC term)
Photo multiplier tube

Quality control

Quality Evaluation Laboratories
Quality Laboratory Instructions
Quadrupole mass analyzer
Rheometrics dynamic spectrometry
Refractive index

Reverse phase (LC term)

Solid adsorbent (GC term)

Scanning Auger microscopy

Size exclusion chromatography
Scanning electron microscopy
Supercritical fluid chromatography
Secondary ion mass spectroscopy
Selective ion monitoring

Standard operating procedures
Statistical process control

Standard Reference Materials
Thermal conductivity detector
Thermionic emission detector
Thermo-gravimetric analysis
Thermal Mechanical analysis
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Uv
XPS
XRF

Ultra-violet
X-ray photoelectron spectroscopy
X-ray fluorescence spectroscopy
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Chemical Fingerprinting - An Important T@M Tool for Control of
Materials

Introduction

Changing global economics has resulted in the need for many U.S.
companies to re-evaluate how they must do business in order to remain
competive in manufacturing products that are either to sold in global
markets or have to maintain market share in the U.S. against products
manufactured overseas. Successful organizations have developed a new way
of thinking during the 1980's and revitalized some old lessons from the past.
The key concept in this new rendering of age-old values is quality. Quality
goods at competitive costs provides a manufacturer a firm foundation upon
which to exist in today's marketplace. This foundation has not evolved easily
for U.S. firms who enjoyed the relatively non-competitive markets of the
past. However, the lessons learned in achieving new and hard-earned market
shares certainly make for a firmer foundation for the future. It is no surprise
that aerosapce manufacturers belong to this group.

The new proliferating quality issues take many different forms;
however, most variations are described in concepts centered around Total
Quality Management or (TQM). Broadly speaking, TQM encompasses a
number of mangement issues which can assist in reaching the goal to
manufacture quality products at reduced costs for a larger marketplace.
Significant ideas relating to improved quality at reduced costs dictates that
management (and the workers) must have available a number of tools for
optimizing upon this common goal. Good design methodology and a generous
allotment of statistical process control (SPC) are standard techniques which,
when practiced throughout the manufacturing facility, does provide
noticeable improvements in product quality and at reduced costs. However,
another useful area for evaluation, which can also assist manufacturing
operations in achieving reduced costs with improved quality, is in the
accountability of materials used in the manufacturing processes.
Consolidation of technologies that can provide an accounting of materials,
which includes in-coming materials, materials in process, end-products and
waste materials will result in substanial cost savings. Also most government
agencies are aware of recent issues emerging in our fiscal and ecological
environments that have been promulgated such that federal agencies shall
promote activities which respond to the improvement of both.

This concept is especially desirable for all contractor organizations
participating in space hardware construction and refurbishment. Many
NASA contractors are already participating in organizational improvement
programs, such as Total Quality Management (TQM)L. TQM techniques are
currently seen as the most effective management techniques to improve



productivity and reliability. In parallel with the concepts for improving
management efficiency, TQM also promotes the development of efficient
strategies for managing materials control. Within the basic philosophy of
TQM, NASA and its contracting organizations will provide a materials
control infra-structure to maintain knowledge of any critical material's lack
of conformance to specifications at all times. In addition the same data will
permit the identification of waste materials for ecological control. The
practice of chemical fingerprinting principles will provide this capability.
Currently at least one major aerospace manufacturer maintains a chemical
fingerprinting programs?2.

Chemical fingerprinting is currently an emerging technology which
enables a manufacturing organization to maintain control over the materials
used in its operations. In this respect chemical fingerprinting is a total
quality management tool that allows management and the employees to
develop confidence in the integrity incoming materials and knowledge of the
composition of wastes. Using the appropriate blend of chemical analysis, data
management, and chemometrics, chemical fingerprinting programs provide
management with information needed for making critical decisions at the
appropriate time. The utility of fingerprint analysis spreads across all
manufacturing programs and can provide many benefits, including quality,
safety and cost-effectiveness. These benefits are realized primarily through
cost-avoidance occurances and open communication between manufacturing,
suppliers, and management.

The critical philosophy underlying chemical fingerprints is to be able
to determine the crucial relationships among the many fingerprints that can
be obtained with analytical instrumentation. Only then can proper decisions
be made regarding the materials conformance to specification or fitness for
use. Often, unambiguous results can only be obtained with the assistance of
statistical (or chemometric) techniques. It is the complementary collaboration
between chemical and statistical analysis which is the key to a successful
fingerprint application. The chosen methods must produce results which can
be utilized effectively for both engineering and management purposes.

1. The instrumentation needed by each contractor will depend on their
particular set of requirements for both implementing and maintaining
a chemical fingerprinting program.

2. In most cases, each contractor has appropriate analytical
equipment, personnel, and procedures to either be currently performing
such analyses, or be able to begin to collect data, that will contribute to
thebaseline information needed for chemical fingerprinting.

|



Background

Fingerprinting encompasses the field of analytical chemistry utilizing
instrumental methods as compared to classical wet chemical analysis. The
major advantages which are obtained through the use of analytical
instruments such as described here are the ease with which a manufacturer
can provide instrument interfaces to computers for data acquisition,
statistical analysis of the experimental results, and compilation of fingerprint
data.

Chemical fingerprinting is a materials characterization technique
which is concerned with either -

a.) the qualitative determination of the elemental or molecular
composition of a  material,

b.) the quantitative measurement of the individual constituents of a

material, or

c.) the quantitative measurement of a relevant property of the
material.

There are many useful examples of chemical fingerprinting programs
which successfully guide manufacturing to produce good products. Most of
these programs have been established in industries with high liability when
defective products are sent to the marketplace. For example, pharmaceuticals
and food processing facilities cannot afford to have products containing toxic
materials shipped from the production facilities to the marketplace.
Consequently their in-coming materials are always fingerprinted to insure
against inadverdent accidents to the customers who use their products.
Liability lawsuits, which can drain a corporations fiscal health, are the major
results of such accidents. In addition, a number of chemcal industries which
use materials by the carload prefer to maintain programs which make sure of
the identity of the reactants before mixing them. In this case the costs
incurred is heavily in favor of performing chemical analysis prior to mixing,
rather than taking a chance that the supplier sent the right material and
proceed on with no due caution.

The composite data taken with several analytical instruments for
the same material represents a signature of that material. The signature
allows one to characterize a material of interest using chemical and physical
measurements. Each fingerprint contains information about the materials;
however, that one piece of information may not contribute to determining
whether a material is "fit for service” or conforms to a specific specification. A
fingerprint yields important, but limited, information and usually cannot
adequately characterize a complex multi-component material. It is the ability



to completely chararacterize materials of interest with an appropriate
"signature” that enables chemical fingerprinting methodology to promote
confidence in the materials used in manufacturing.

Implicit in the concept of signature or fingerprint analysis is the
computerized database or databases which contain the baseline information
and historical archiving of fingerprints over extended periods of time. Such
databases are normally maintained in individual datafiles supplied with
analytical instrumentation and supporting software. Robust data
management systems (also known commercially as Laboratory Information
Management Systems or LIMS) for handling the full fingerprint and
signature information are not always readily available. Consequently the
data management systems used in chemical fingerprinting programs will
continuously have to be up-graded to meet the demands of the organization.
Hence, there is no single definition or solution for the data management
requirements which fits all organizations.

Chemometrics is a discipline within analytical chemistry concerned
with the selection and optimization of instrumental methods as well as the
interpretation of data from these chemical analyses. Chemometrics makes
extensive use of mathematical and statistical methods with the intent of
producing a maximum of concise chemical information. The use of
chemometrics becomes more obvious as the data analysis becomes more
complex. Chemometric techniques can assist the measurement process by
determining sampling requirements, the number of experiments required to
characterize an analytical procedure, or to extract the useful characteristics
from otherwise ambiguous data sets. Many software packages are available
commercially to provide support in statistical analysis.

A major goal in the lot-to-lot consistency of its products is important
in any production facility that requires multiple suppliers or materials from
the same supplier over an extended period of time. The consistency of the
materials used in production of a specific part or in TQM terms, the reduction
of variation in the material, is extre,ely important in formulating not only
the perfrormance level of the part in service; but also being able to predict
how much that part truely costs to manufacture.

Specifications and engineering parameters for in-coming materials, for
instance, can become a starting point for determining what signatures need
to be determined early on in the program. Each contractor organization can
determine what constitutes the minimum essential information for which
"fingerprints” should be established. A successfully tested material is then
one whose "fitness for use” can be easily and quickly demonstrated by the
results of one or more instrumental test procedures. Over a period of time the
lot-to-lot consistency of the vendor can then be determined.
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Both chemical and physical measurements obtained from instruments
found in the analytical laboratory can provide the data required for a correct
evaluation of the materials characteristics. Note that there can be a
challenge, for a given material, to discover and elucidate the most efficient
combination of practical procedures which will successfully accomplish the
goals of the chemical fingerprinting program.

Benefits

Fingerprinting encompasses the field of analytical chemistry utilizing
instrumental methods as compared to classical wet chemical analysis. The
major advantages which are obtained through the use of the analytical
instruments described here are the ease with which a manufacturer can
provide instrument interfaces to computers for data acquisition, statistical
analysis of the experimental results, and compilation of fingerprint data.

With these advantages, instrumental analysis provides a major
capability for the characterization and identification of materials in a reliable
and timely manner. It is also anticipated that the analytical instruments
which are used for chemical fingerprinting are primarily already physically
in place in most laboratories, being used primarily for in-process verification
of particular products or processes. Combining these capabilities with
computer based systems for data manipulation and statistical analysis, these
same instruments can provide the basic foundation for implementing a

chemical printing program.

The use of fingerprinting as a quality assurance technique can be
profitably applied to problems in all industries ranging from aerospace to
pharmaceuticals. The major benefit to NASA is the ability to build space
hardware at reduced costs over the life cycle of the system. All
manufacturing organizations can benefit from the chemical fingerprinting
approach in a number of different ways. The two major benefit areas, which
are described below, are cost avoidance and increased materials reliability.
For example, cost benefits are enhanced through the manufacturing
operation by eliminating the processing of materials which would not allow
the final product to conform to the specifications required. It is more cost
effective to reject defective materials, rather than defective parts.

In addition, the following statements list some benefits derived from
utilization of chemical fingerprinting in a manufacturing operation:

1. When fully developed, the fingerprints and signatures developed provide a
baseline chemical profile of those materials currently in use and considered



to be in conformance with the specifications. This information can be utilized
strictly in-house, as part of the contractor's operations or more importantly,
shared with other contractor's as part of a database for materials used in
NASA's manufacturing programs.

2. Lot-to-lot consistency from multiple suppliers or materials from the same
supplier over an extended period of time can be monitored. If any formulation
changes occur that could affect the manufacturing processes, its
inspectability, or cause environmental damage unbeknown to the customer,
then obviously major problems will occur.

3. Mislabeled products, process contaminations, and material degradations
can all be identified. An organization which utilizes chemical fingerprinting
techniques for materials control, will be less likely to be effected by such
incidents. As mentioned earlier, a tremendous cost-savings can occur when
defective materials are not introduced into the manufacturing process. Other
undesirable and costly problems, such as contaminating good materials
already in production or forming toxic fumes when the wrong chemicals are
mixed, can easily be avoided when the materials are correctly identified
before use.

4. Material changes, when they do occur, can readily be traced to their source
by comparison of the questionable lot with the historical information.
Formulation variations and substitutions can be identified whether made at
the vendor's facility or at one of his suppliers.

5. The chemical fingerprinting may be the basis upon which a change, by
vendor or production site, may not require an expensive requalification
effort.

6. The acceptance testing of material from a small supplier who is really a
"blender” and cannot afford an analytical laboratory, may be one the more
practical uses of fingerprinting.

7. In addition to inspecting in-coming materials for conformance to
specifications, the chemical fingerprinting approach can also be used to
monitor intermediate products or processes in production. Used in this
fashion, the approach can then provide confidence towards the reliable
performance of the manufacturing processes and the end products.

8. The data base can also supply vital information for failure analyses.
Without prior knowledge of the constituents contained in a material, failure
analysis can be a long and difficult process. The process can be shortened
with a more thorough knowledge of the material.



9. Waste management has become a significant portion of any manufacturing
organization, particularly in the case of the complex processes involved in
manufacturing  today's space systems. Thorough knowledge of the
ingredients which leave the manufacturing site, as a gas, liquid, or solid is
mandatory in some localities. Organizations which are performing
appropriate accounting of materials are going to benefit accordingly as
environmental laws and regulations are promulgated by both the federal and
the state governments.

A number of aerospace examples also have been documented. For
instance, the acceptance testing difficulties encountered during the extensive
use of critical but proprietary insulating foam materials for a NASA
propulsion program gave rise to the critical need for chemical fingerprinting.
These formulations are chemically complex and involve a number of chemical
sub-systems, including catalysts, flame retardants, blowing agents, and
surfactants. Some of the critical ingredients are even proprietary at the sub-
tier supplier level. A major risk in the use of proprietary materials is that
only the supplier has purview over the formulation and can, therefore, make
any changes he deems desirable or necessary. While there was no desire for
the NASA contractor to "crack" the formulations, it was imperative to assure
the lot-to-lot consistency of these critical materials for reliable performance of
the product. The chemical fingerprinting approach was the contractor's
solution to this dilemma. Subsequently a battery of chemical and physical
tests on both the reactants and the cured product was instituted. These
measures consisted of approximately twenty single value tests which,
although adequate, were both time and labor intensive. The end result was
that the NASA contractor developed a signature for the formulation and now
has confidence in his ability to evaluate the deliverables required for the end
product.

Cost Benefits Analysis

In determining a realistic cost benefits model for chemical
fingerprinting, it is difficult to obtain background data from current
manufacturers due to proprietary constraints. Consequently the following
model is developed from life cycle costing? and quality engineering®
considerations.

Cost models for labor and materials, in their simplest form, can be written
4.
ast:

Direct Labor Cost



SSO;

N
(1) DLC=2Rj (STD; +51),

j=l

where: j = number of operations

R‘é = hourly rate
LS; = Lot size
SS0; = Set up time
STD; = Lot size

These direct labor cost estimates must include all operations. In
addition to estimating the labor costs for all processes for forming product, it
must also include activities such as analysis of incoming ‘materials, failure
analysis of defective products and repair of defective products, and labor for
handling removal of scrap and waste materials. Only then can the cost
benefits for chemical fingerprinting be truly understood.

Direct Materials Cost

2 DMC =(Q)(CQ)(1+ Y. ¥;)—scrap

i=1

where Q = Quantity of materials used in product
CQ = Cost per unit quantity of material
y1 = non-deliverable materials used in production
Y9 = scrap material
y3 = waste material
74 = unsuspected non-conforming material

Obviously the goal of production engineering is to maximize on delivered
product from the incoming materials with as little scrap and waste material
as possible. It is assumed that maximum utilization of materials has been
implemented into the production scheme and only unintented deviations
from that schedule will affect the cost benefits analysis.

Quality Engineering Considerations

When Motorola won the Malcolm Baldridge Award in 1990, a major
thrust of their submission was developed around setting goals for quality
within the manufactiring operations. In developing these goals, the plan to
improve quality consisted of progressive improvement from the defect rate of
3o at that time to 60 by 1995. The following table defines the defect rate



production for this progression5:

Defect Occurance Rate Parts per Million Per Cent Defects
3o 66810 6.68 %
40 6210 0.62 %
50 233 0.002 %
6o 3.4 0.0003 %

The final goal of 3.4 ppm defect production was philosophically designed to
give each worker a goal in which he or she could logically relate to in terms of
minimizing mistakes. The alternative was to to state that every worker
should make no mistakes, and that philosophy was deermined to be
unrealistic by all. '

For our purposes, the rate of defect occurance in the manufacturing
processes can be developed in terms of current quality in the manufacturing
environment. For example if the current quality at a particular
manufacturing facility is still at the 3¢ level then there is a 6.68 % error
factor generated as the product is formed. Likewise if the suppliers to an
aerospace manufacturer operate at the 3¢ level, there is a high probability
that some fraction of that 6.68 % is going to show up in received materials,
Our goal is to determine how chemical fingerprinting can then avoid the
potential costs incurred by aerospace manufacturer by utilization of chemical
fingerprinting of incoming materials.

The impact of operating at the 3¢ level without chemical fingerprinting
can be considered in the following way. Since it is very unlikely that 6.68 %
of the suppliers products are non-conforming, we suggest a fraction of the
6.68 %, say 1 % will be passed on the customer. In the equation for direct
material costs, then y4 would be equal to 2 % (1 % for defective materials
and 1 % for the replacement material needed to manufacture the parts).
Thus, according to equation (2), the minimum impact on materials costs
would be:

3
(3) DMC = (@XCQ)(1+ Y 7, +0.02) - scrap

i=]

Determining the Direct Labor Costs for an organization not using chemical
fingerprinting follows a similar pattern. Unfortunately, it is more difficult to
estimate the excessive manhours required for failure analysis and repair, or
remake of the part. Total labor costs is very dependent on which phase in the
product manufacturing cycle the defective component is found and acted
upon. It is easy to see that a small number of operations in performing
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Some comments are in order to establish how chemical fingerprinting
relates to these estimates. Firms operating in Case 1 obviously have to move
to chemical fingerprinting of in-coming materials in order to survive in a
competitive environment. Firms operating in Cases 2 are probably moving
toward a greater utilization of TQM in their manufacturing programs and
without implementing chemical fingerprinting will not achieve 56 (or in
Motorola’s case, 60 ). It is also important to remember that in most cases the
aerospace manufacturer and the supplier may not be operating in the same
environment. Particularly in the most probable case in which the supplier
may operate at 3¢ or less, the only methodology for cost avoidance is to
perform chemical fingerprinting on in-coming materials. A significant result
of Table 2.0 is that operating at 50 or better results in significant cost
savings for the customer. All program managers of both small and large
aerospace will appreciate the impact of this result in their respective
programs.

The analysis for determining return on investment for implementation
of a chemical fingerprinting program depends upon the cost savings gained
by not receiving out-of-specification materials®. The normal approaches to
making important decisions use cash flow (or cost avoidance in our scheme)
for determining return on investment. For example an initial investment into
implementing a chemical fingerprinting program may require $ 2M in
equipment and $ 0.5 M in personnel in an attempt to overcom the $ 5.5 M
excess costs for a firm operating at the 30 defect rate. The company can
depreciate the full cost of the equipment over 5 years and assuming a
straightline improvement in savings of $ 1M due to fingerprinting, the
following table results:

Year 1 2 3 4 5
Depreciated $400K $400K $400K $400K $400K
Value
Cost $10M $20M $30M $40M $50M
Avoidance

CashFlowor Net $14M $24M $34M $44M $54M
Savings (w/o

personnel costs)

Cash Flowor Net $0.9M $19M $29M $39M $49M
Savings (with

personnel costs)

These estimated cash flows imply a payoff for the equipment investment
in less than 3 years. Likewise the calculation for the return on investment is
also quite favorable:

11



Average Investment = (Cost + X undepreciated balance) / (years to
depreciate)

=2M+16M+1.2M+ 0.8M + 0.4 M)/
=12M.

The average cash flow from the above table over the five years is $ 3.4 M,

hence the average return on investment is:
Return on Investment = 1.2 M/3.4 =0.353 or 35.3 %.

It is important to remember that these calculations are very simplistic,
real data from firms maintaining a chemical fingerprinting program has not
been made available for this analysis. The results of this analysis provides a
provocative concept for programs managers in both government and the
contractor environments. Chemical fingerprinting can more than pay its way
by analyzing in-coming materials alone. The other benefits derived from
chemical fingerprinting in waste disposal, health and safety considerations,
and product develoment only add to this simplified estimate.

Supplier Interfaces

Supplier cooperation is wvital to any fingerprinting effort for a
manufacturing operation. As shown in the above analysis, the supplier
probably is not operating at a 3cenvironment. In a number of cases the
supplier to the aerospace is merely a distributor who is able to submit the
lowest bid. For this reason, it is important that the aerospace prime
contractors lead the way into establishing chemical fingerprinting programs
and thus to bring the rest of the industry into a higher quality environment.
There are benefits for the suppliers who participate in the prime contractor's
chemical fingerprinting program, such as a more in-depth knowledge of their
products. This level of knowledge can only be obtained through use of
sophisticated, state of the art analytical equipment.

There are special relationships which need to be developed in terms of
the vendor (supplier) and the prime contractors. Since many suppliers are
equipped with minimally staffed and instrumented quality control
laboratories, then chemical fingerprinting data will be able to provide a more
comprehensive insight to their raw materials, processes and products. This
exchange of information can become a useful product of the supplier interface
and elevate the productivity and quality of the products manufactured by the
prime contractor. One example in which a better relationship was obtained
with a reluctant vendor occurred when fingerprinting diagnosed the cause of

'3

a material problem to be not with the primary vendor but a supplier to that

12



inferior materials, the primary vendor then became very positive in hig
commitment to the program.
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Foreword

This supplement to the Guidelines for Maintaining and a Chemical Fingerprinting
Program has been developed to assist NASA personnel, contractors, and sub-contractors in
defining the technical aspects and basic concepts which can be used in chemical fingerprinting
programs. This material is not meant to be totally inclusive to all chemical fingerprinting
programs; but merely to present current COnCepts. Each program will be tailored to meet the
needs of the individual organizations using chemical fingerprinting to improve their quality and

reliability in the production of aerospace systems.
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1.0 INSTRUMENTATION

Modern instrumental analysis laboratories utilize a variety of chemical analysis instrumentation.
This chapter describes the most commonly used analytical instruments, the principles behind
the corresponding analytical techniques, and the applications and requirements of these
techniques.

1.1.  Chromatography

Chromatography is used to separate the components of a mixture. A chromatographic system
consists of two mutually immiscible phases: a mobile phase which can be a gas or a liquid, and
a stationary phase which is either a solid or a liquid supported on a solid within a column. The
mixture is introduced into the mobile phase which flows through the stationary phase.
Chemical species within the sample interact with both the mobile and stationary phases. The
extent of interaction depends upon the chemical and physical properties of each component.
Each component of the mixture partitions, Or distributes itself between the two phases based on
properties such as polarity, charge, or molecular size. With proper selection of mobile and
stationary phases, the component species are gradually separated into distinct volumes or bands
within the mobile phase. Separated components are eluted from the column in order of
increasing interaction with the stationary phase. A detector placed at the end of the column
responds to the eluted species, and its signal is plotted as a function of time. The resulting plot,
called a chromatogram, consists of a series of peaks. The location of a peak along the time axis
can be used to identify the component, and the area under each peak provides a quantitative
measure of the component.

Chromatographic techniques can be broadly classified according to the physical state of the
mobile phase (Figure 1.1). Gas chromatography (GC) refers to a technique in which the mobile
phase is a gas, whereas in liquid chromatography (LC) the mobile phase is a liquid.

—Gas-liquid (GLC)

Gas chromatography —
l— Gas-solid (GSO)

| Supercritical fluid chromatography (SFC)

Chromatography—
—— Liquid-liquid (LLC)

—— Liquid-solid (LSC)
Liquid chromatography—1
— Size-exclusion (SEC)

L Ton-exchange (IEC)

Figure 1.1. Classification of Chromatographic Techniques



Chromatographic methods can be further categorized according to the stationary phase’s
physical state or its mode of interaction with the sample. When the separation involves
partitioning between a gaseous mobile phase and a liquid stationary phase, the method is called
gas-liquid chromatography (GLC). In gas-solid chromatography (GSC), separation is based on
size exclusion or adsorption of sample components onto the surface of a solid stationary phase.
Liquid-liquid chromatography (LLC) and liquid-solid chromatography (LSC) refer to the
analogous methods using liquid mobile phases. Two additional liquid chromatographic
methods are commonly used. In size exclusion chromatography (SEC), species are separated
based on molecular size due to differential permeation of a porous stationary phase. In ion-
exchange chromatography (IEC) ionic species are separated by selective exchange of counter
ions with an ion-exchange resin.

Recently, supercritical fluids have been used as chromatographic mobile phases with both
liquid and solid stationary phases. Supercritical fluids exhibit properties intermediate between

cannot replace either method. SFC is infrequently used in industrial laboratories and will not be
discussed further in this handbook.

Discussions of the kinetic processes and physical forces that comprise the theoretical basis of
chromatography are beyond the scope of this handbook. However, several definitions and
concepts are essential for a practical understanding of chromatographic techniques.
Chromatographic separations arise from selective retention of components on the stationary
phase. Retention results from interactions between the component and the stationery phase.
Four modes of interaction occur in chromatography: partition, adsorption, size exclusion, and
ion-exchange. In the partition mode, sample components distribute themselves between the
stationary and mobile phases on the basis of the relative phase solubility of the components.
Components having differing phase solubilities will spend different amounts of time in the
stationary phase, and will be eluted from the column separately. Most GC and LC separations
are based on partitioning. In the adsorption mode, components selectively adsorb onto the
surface of the stationary phase. At one time, adsorption was the most widely used separation
mode in both GC and LC. Although adsorption chromatography sometimes suffers form
irreversible adsorption or peak distortion due to slow desorption, it remains the preferred
approach in certain applications. In the size exclusion or sieving mode, separation is based on a
component’s ability to penetrate the pores of the stationary phase. Large molecules that are
excluded from the pore structure are rapidly eluted from the column, whereas small molecules
permeate the pore structure and remain in the column longer. Size exclusion is used in both LC
and GC. Ion-exchange is based on exchange equilibria between ions in the sample solution and
ions on the surface of an ion-exchange resin. This mode of separation is applicable only to LC.

Parameters used to describe chromatographic separations can be understood by examining the
hypothetical chromatogram in Fi gure 1.2,
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Figure 1.2 Hypothetical Chromatogram

In this example, @ sample composed of Species 1 and 2 entered the system at time zero on the
chromatogram. Solvents and sample components that do not interact with the stationary phase
move through the column at the velocity of the mobile phase, and are eluted from the column at
time tp. In this example, species 1 and 2 interact with the stationary phase, with species 2
interacting more than species 1. The retention time, tR, of each component is defined as the
time required for the component to elute from the column and be detected. The peak width, W,
is obtained by drawing tangents to the sides of the peak and measuring the distance between the
tangents as they intersect the baseline.

The sample is initially applied to the column as a narrow band on plug. However, a8 the species
present in the sample move through the column and are separated, the bands broaden.
Chromatographic peak shapes are similar to the normal, or Gaussian, Curve.

Band broadening adversely affects the efficiency or separation capability of a chromatographic
system. Band broadening in chromatography can be attributed to mass-transfer processes. One
such process is eddy diffusion, which is due to the multitude of pathways a molecule or ion can
follow through a packed column. Because these pathways differ in length, molecules or ions of
the same species reach the end of the column at different times. A second process that can lead
1o band broadening is longitudinal diffusion, the migration of a molecule or ion away from the
center of a band, where its concentration is highest, t0 regions of low concentration on the
outskirts of the band. Longitudinal diffusion is more significant in gas chromatography due to
the relatively high diffusion rates of species through gaseous media. Another process
responsible for band broadening is stationary phase mass-transfer. For a liquid stationary
phase, this involves the diffusion of 2 solute through the liquid stationary phase to the stationary
phase/mobile phase interface where transfer to the mobile phase occurs. When the stationary
phase is @ solid, the stationary phase mass-transfer is controlled by the rate at which the solute is
adsorbed onto Or desorbed from the surface of the stationary phase.

Band broadening can often be minimized by judicious selection of experimental parameters.
Improved separation efficiency can be achieved by decreasing the stationary phase particle size,
by decreasing the thickness of the immobilized liquid in the case of liquid mobile phases, and
by decreasing the viscosity of the mobile phase. In gas chromatography, longitudinal diffusion
can be minimized by lowering the temperature of the column and mobile phase.



column length, L.
L=NH

Column efficiency is increased as the number of theoretical plates becomes larger or as the
column length increases. The number of theoretical plates can be readily calculated from two
experimentally measured parameters, tg and W:

t
N=16(y )2

Both N and H are used by column manufacturers and by analysts as a measure of a
chromatographic column’s performance. To compare the efficiencies of two columns, it is

The selectivity factor, a, is a measure of the relative retention of two components in a mixture,
Selectivity can be calculated as:

t -tM
o= YR, 1)-tm

where tR,2 is measured for the more strongly retained component. Selectivity depends on the
nature of the mobile and stationary phases and temperature.

Values of k' between 1.5 and 4 are desired for adequate retention and reasonable analysis times.

Efficiency, selectivity, and Capacity factors together control the resolution, R, between two
peaks:

N2 a1 &
R=C) E (3o,



Resolution can also be calculated directly from the chromatogram:

t _t
R = — B2 (R1—
0.5 (W2 +W1)

A resolution of 1.5 corresponds to 0.2% overlap of peak areas and is adequate for most
separations. Figure 1.3 demonstrates the effect of selectivity, capacity factor, and efficiency on
the resolution of the separation.

good resolution
due to
high selectivity

good resolution
due to
high efficlency

bad resolution
due fo
low selectivity

bad resolution
due to
low efficlency

Figure 1.3 Chromatographic Resolution

Many similarities exist between GC and LC. The definitions and basic concepts discussed
above apply to both techniques. In addition, all instruments used for either GC or LC include
the following basic components: 2 mobile phase reservoir and delivery device, a sample
introduction device, the chromatographic column, a detector, and a readout device. However,
the types of samples analyzed by each technique, and the exact nature of the individual
instrumental components required by each technique are different. Because of these
differences, these techniques will now be discussed separately.

1.1.1 Gas Chromatography

Gas chromatography (GC) is used to separate thermally stabile volatile substances. In GC, a
vaporized sample is carried through a column by an inert carrier (mobile phase) gas.
Components of the sample are separated due to differences in vapor pressure and affinity for the
stationary phase. As each component is eluted from the column, its presence is sensed by a
detector and a response is displayed on a recording device. The major components of a GC
system are shown in Figure 1.4.



Figure 1.4 Schematic of a Gas Chromatograph

The samples are usually introduced into the system by direct injection. The sample is injected
by a microsyringe through a septum into a heated sample port where it is vaporized and carried
into the column. Use of automatic samplers increase precision and frees the analyst for other
duties. The carrier gas must be chemically inert and pure. Helium, nitrogen, and hydrogen are
the most commonly used mobile phases in GC. Because contaminants such as water or oxygen
can cause deterioration of column or detector performance, purity is essential.

Two types of columns are commonly used: the packed column and the open tubular or
capillary column. Packed columns can accommodate much larger sample volumes and are
usually easier to use. Open tubular columns give much better resolution and are preferred for
separations of complex mixtures. Packed columns are constructed from glass or metal tubing.
Column inner diameters range from 1 to 10 millimeters, and lengths range from 2 to 3 meters.
For gas-liquid chromatography, the columns are packed with a solid support material (125 to
250 sm diameter) that has been coated with an organic liquid layer immobilized by adsorption
or chemical bonding. For gas-solid chromatography, the packing may be a porous organic
polymer or molecular sieves. Open tubular columns are usually constructed from fused silica.
These columns have an internal diameter of 0.1 to 0.5 millimeter, and a length of 10 to 100
meters. Wide-bore capillary columns made of glass have an inner diameter of 0.75 mm. The
inner surface of the column is coated with a liquid stationary phase, 1 to 5 micrometers thick.

The selection of the stationery phase is a crucial step in method development. Hundreds of
materials have been proposed as stationary phases for gas-liquid chromatography. The ideal
stationary phase will be thermally stable, chemically inert, and non-volatile. Selection of a
suitable stationary phase for a specific application is based on the selectivity and polarity of the
stationary phase. Non-polar stationary phases are used to separate components having
significantly different boiling points. A stationary phase that will selectively interact with one or
several of the components should be selected when the mixture contains components having
similar boiling points.

The most frequently used liquid stationary phases are the silicone polymers.
Poly(dimethysiloxane) is a nonpolar stationary phase used for separations of nonpolar
compounds based on boiling point. By replacing some of the methyl groups with phenyl
groups, slightly polar phases capable of separating olefins, aromatics, and other unsaturated



species are obtained. Replacement of the silicone’s methyl groups with even more polar
functionalities (such as cyanopropyl or trifluoropropyl) gives a more polar or more selective
stationary phase. Most chromatographic supply catalogues offer excellent advice on the
selection of stationary phases. Some common stationary phases, and their applications, are
listed in Table 1.5.

Solid materials used as GC stationary phases include the molecular sieves and porous polymers.
Molecular sieves are porous alkali metal aluminosilicates. Pore size is uniform and depends on
the cation present. Porous polymer packings are made from styrene divinyl benzene
copolymers. Molecules smaller than the pore dimension penetrate the particles and are
adsorbed. Therefore, separation is based on molecular size and shape. Gases and low boiling
point liquids can be separated on these solid stationary phases.

Because column temperature must be controlled to within » 1° C for precise work, GC columns
are coiled and housed in a thermostated oven. Column temperature is selected based on the
boiling range of the sample. If the sample components boil over a narrow range, it may be
possible to achieve the separation in a single isothermal run at a temperature near the average
boiling point of the sample components. If the sample boils over a broad range, it may be
necessary to use temperature programming, i.e., to continuously or incrementally increase the
column temperature during the separation. The column temperature is initially set below the
boiling point of the lowest boiling component. The final temperature is near the boiling point
of the highest boiling component (but within the thermal limit of the stationary phase). Thermal
programming shortens the retention time of the later eluting components, decreasing both the
band broadening of the later peaks and the total analysis time.

The detector senses the presence of the separated components as they elute from the column.
Dozens of detectors have been used for GC. The five types described below are the most
frequently used. Figure 1.5 illustrates the range over which the most popular detectors are used,
while a guide for detector selection is given in Figure 1.31 on page 66.
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Figure 1.5. Useful ranges for Gas Chromatographic Detectors



Thermal conductivity detectors (TCD) display universal response and are rugged, relatively
inexpensive, and nondestructive of sample. The TCD is based on changes in the thermal
conductivity of the gas stream emerging from the GC column. The sensing element of the TCD
consists of a metal block container and a filament that is electrically heated. When gas flows
over the filament, heat is transported from the filament to the metal block. Heat loss from the
filament results in decreased temperature and electrical resistance. Because the thermal
conductivities of helium and hydrogen are six to ten times greater than those of most organic
compounds, even small levels of organics in the column effluent cause large decrease changes
in thermal conductivity and a marked increase in filament temperature and resistance. A
change in filament resistance signals the emergence of a sample component from the column.

Flame ionization detectors (FID) display nearly universal response, high sensitivity, wide linear
response range, and excellent reliability. Compared to the TCD, the FID is approximately 1000
times more sensitive, but also more complicated, more expensive, and destructive. In the FID,
combustible sample components are burned in a hydrogen/air flame, generating free ions and
electrons. The flame in the FID is located between two electrodes. Ions and free electrons
present in the pure flame give rise to a small current when a potential is applied across the
electrodes. As a carrier gas containing combustible sample components passes through the
flame, additional ions and free electrons are generated and the current markedly increases.
Response is proportional to the number of reduced carbons in the sample component. Oxidized
carbons (present in functional groups such as carbonyl, alcohol, carboxylic acid, ether and their
sulfur analogs) produce little or no response. Because the FID does not respond at all to water
or to the permanent gases (Np, Op, CO, CO», etc.), it is ideal for trace analysis in aqueous
solutions and air samples.

Thermionic emission detectors (TED) respond only to compounds that contain nitrogen or
phosphorus. The TED is similar to the FID except that the flame temperature and electrode
polarity are optimized to enhance ionization of nitrogen and phosphorus containing compounds,
and to suppress ionization of other compounds. The TED is 500 times more sensitive for
nitrogen, and 50 times more sensitive for phosphorus than the FID. The TED is frequently
referred to as the nitrogen-phosphorus detector (NPD).

Electron capture detectors (ECD) respond selectively to molecules containing electronegative
functional groups such as halogens, nitrate, nitrite, and peroxide. The ECD also responds to
unsaturated compounds such as polynuclear aromatics. In the ECD, the chromatographic
effluent passes between two polarized electrodes, one of which is coated with a radioisotope
that emits beta particles. The beta particles bombard the carrier gas, producing a burst of
electrons and current flow between the electrodes. The presence of electron-capturing species
is detected as a decrease in current.

Mass spectrometers are used as highly specific and highly sensitive GC detectors. Combined
gas chromatography/mass spectrometry (GC/MS) can be used to quantitate and identify the
components of a mixture. Mass spectrometers operate under high vacuum. The gas flow rates
from capillary columns is usually low enough to permit direct connection between the column
and the mass spectrometer. With packed columns, an interface system must be used to remove



most of the carrier gas. Two frequently used interfaces are the jet separator and the membrane
separator.  The jet separator takes advantage of the faster diffusion rate of the carrier gas
compared to analyte. When column effluent is forced through a fine nozzle into a vacuum
chamber it rapidly expands. The carrier gas expands more rapidly than the analyte. An orifice
aligned with the nozzle collects the core of the effluent stream which is now enriched in
analyte. The membrane separator is based on differences between the abilities of the carrier gas
and analyte molecules to permeate a silicone membrane separating the column effluent from the
mass spectrometer. Organic analyte molecules pass more readily through the membrane and
into the mass spectrometer.

Detectors on mass spectrometers can acquire and display data in several ways. All of the ion
currents can be summed and plotted as a function of time to give a total ion current
chromatogram. If the analyst is interested in a particular peak the mass spectrum acquired at the
time the peak passes through the detector can be plotted. The spectrum can then be used to
identify the separated component.

In selective ion monitoring (SIM), the instrumental parameters are adjusted to detect only those
ions associated with a particular compound or class of compounds. For example, if a-
Methylstyrene were the only analyte of interest, only the 118 and 117 m/z ions would be
monitored. SIM gives enhanced sensitivity because the background signal due to other ions is
filtered out and because more time can be spent collecting data for the selected ions.

1.1.2 Liquid Chromatography

Liquid chromatography is used to separate mixtures of high molecular weight polyfunctional
materials, polymers, thermally unstable compounds, and ionic species. Unlike GC, LC is not
limited to thermally stable, volatile materials. LC and GC are complementary techniques.

Liquid chromatography was originally performed in large glass columns up to 5 m long and 5
cm diameter. To minimize mobile phase flow rates, the stationary phase particle diameters as
large as 200 «m were used. Even under these conditions, separations required several hours.
Attempts to shorten the analysis time by increasing the mobile phase flow rate resulted in
decreased separation efficiency. In the 1960s it became possible to produce highly efficient
stationary phase packings with particle diameters near 10 sm. These small diameter packings
lead to the development of new instrumentation capable of operating at higher pressures. This
new technology was called HPLC, high performance liquid chromatography. Except for
preparative applications, HPLC has replaced classical glass-column LC.

Figure 1.6 shows the major components of a typical HPLC instrument. The components
perform the following functions: delivery of the mobile phase, sample introduction, separation
of the mixtures components, and detection of each component.

A liquid chromatographic separation can be performed by isocratic elution, in which a single
mobile phase is used, or by gradient elution, in which two or more solvents are used in varying
ratios throughout the run. For isocratic elution, the minimal mobile phase delivery system
consists of a mobile phase reservoir and a pump. Gradient elution requires a reservoir and



(usually) a pump for each solvent, and a gradient mixing device.
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Figure 1.6  Functional Schematic of a Liquid Chromatograph

Solvent reservoirs are constructed of glass or stainless steel. The original solvent bottle is often
adequate. The mobile phase itself must be free of particulates which may cause blockages and
dissolved gases which may be released as bubbles in the detector or in the pump check valves.
Particulates are removed by in-line filters placed between the reservoir and the pump. Gases
may be removed by sparging, sonicating, vacuum pumping, or by heating and stirring.

Pumps used for HPLC must be able to operate at pressures up to 6000 psi and to produce
reproducible and constant flow rates of 0.1 to 10 mL/min. Two types of pumps are used:
reciprocating piston and positive displacement. Reciprocating piston pumps are the most
popular. In a piston pump, a small (30 or 400 L) cylindrical chamber is alternately filled and
emptied by the back-and-forth motion of a motor-driven piston. Flow direction is controlled by
means of check valves. On the backward stroke, the piston pulls solvent from the external
mobile phase reservoir. On the forward stroke, mobile phase is pumped to the column.
Because no solvent is pumped to the column on the backward stroke, the flow is pulsed, and a
pulse damping system should be used. Dual-head (or triple head) pumps consist of two (or
three) pistons mechanically coupled so that pumping and filling occur simultaneously. Flow
pulsations are greatly reduced, but not eliminated, in the dual head and triple-head pumps.
Advantages of reciprocating pumps include unrestricted operating time due to the use of an
external reservoir and rapid solvent change over due to the pump's small internal volume.
Positive displacement, or syringe, pumps consist of a large (250 to 500 mL) solvent reservoir
equipped with a plunger. A stepping motor actuates the plunger through a screw-driven
mechanism. Displacement pumps produce a pulse-free flow. However, it suffers from limited
solvent capacity, requiring periodic shut-down of the system for refilling.

Two types of gradient mixing devices are used: low-pressure and high-pressure. In a low-
pressure system, the gradient is formed ahead of the high pressure pump. A system of
proportioning valves accurately measure and deliver up 10 four solvents to a low volume mixing
chamber. In a high pressure system, mixing of the solvents occurs after the pumps. High
pressure systems are more costly because they require a separate pump for each solvent used in
the gradient. However, they provide more precise control over the gradient composition. In
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both types of gradient systems, changes in the mobile phase composition are controlled by a
gradient programmer. Both continuous and step gradients are used. Because the mixing
process can generate heat which can result in gas evolution thorough degassing of each mobile
phase is essential.

The most widely used sample introduction devices are sampling valves. These devices permit
sample introduction at high pressure with minimal interruption of mobile phase flow. Typical
* valves can deliver 10 to 500 <L with a few tenths percent precision. Automatic samplers
available for HPLC allow unattended operation of the equipment.

HPLC columns are constructed of smooth-bore stainless steel tubing or glass-lined metal
tubing. Several types of analytical columns are used: standard, short, and narrow bore.
Standard columns are 20 to 30 cm in length with an inner diameter of 4 to 5 mm and stationary
phase particle size of 3 to 10 m. Short columns that are 3 to 6 cm long and packed with 3 +m
particles give good separations with increased sample throughput and minimal solvent
consumption. These columns are useful for relatively easy separations (N < 4000) when speed
is essential as in quality control applications. Narrow-bore (or microbore) columns have small
internal diameters, usually 1 to 2 mm. Narrow-bore columns offer several advantages including
decreased solvent consumption and increased detector response. Disadvantages include a
requirement of special low volume injection valves, detector cells, and pumps.

Guard columns are sometimes placed between the injection valve and the analytical column.
Guard columns are short and packed with a stationary phase similar to that used in the
analytical column, but of larger particle size. Guard columns protect the analytical column by
trapping particulates and sample components that would be permanently retained on the
analytical column.

As mentioned before, there are four modes of liquid chromatography: liquid-liquid (partition),
liquid-solid (adsorption), ion exchange, and size exclusion. Each mode is applicable to
different types of samples and each mode makes use of different types of stationary phases.
Liquid chromatographic techniques are also categorized on the basis of the relative polarities of
the stationary and mobile phases. In normal-phase chromatography, a polar stationary phase is
used with a nonpolar mobile phase. In reverse-phase chromatography, the stationary phase is
less polar than the mobile phase.

Column packings used for partition chromatography are of two types. In the liquid-coated type,
the liquid stationary phase is held on the solid support particles by adsorption. In bonded-phase
packings, the stationary phase is covalently bonded to the support particles. Bonded-phase
packings have almost completely replaced the liquid-coating packings due to their greater
stability. Bonded phase packings are based on rigid silica particles. The organic stationary
phase is bonded to the silica surface through a siloxane linkage:

| l
—Sli -O— |S1'— R

where R is an organic group. The polarity and selectivity of the stationary phase can be
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controlled by varying the organic group. In the most popular bonded phase packings, the alkyl
group is an n-ocytl (Cg), or an n-octadecyl (Cg) group. Both are nonpolar, however, the size
of the alkyl group affects retention. The Cg packing will accomplish the separation faster, but
the C1g phase can be used with larger sample sizes. Bonded phases containing phenyl groups
are also nonpolar, but more selectivity interact with aromatic and unsaturated hydrocarbons.
Phases that contain cyano groups are moderately polar and are used to separate ethers, esters,
ketones, aldehydes, and nitro compounds. Amino alkyl bonded phase are highly polar, and are
useful in separations involving alcohols, phenols, carbohydrates, and amines.

Column packings used for liquid-solid chromatography are composed of silica, alumina, or
carbon. Silica packings are the most frequently used. LSC is primarily used separate nonpolar,
water-soluble molecules. LSC can also be used to separate isomeric mixtures.

Size exclusion packings are composed of cross-linked polymers or porous glass or silica.
Styrene-divinylbenzene copolymers are frequently used.

In packings used for ion chromatography, a monolayer of small (0.1 to 0.3 +m) polymeric
beads are aminated or sulfonated and electrostatically bonded to a relatively large (10 to 30 +m)
polymeric or glass bead. The aminated resins are used to separate anions, while the sulfonated
material are used for cations.

Liquid chromatography has no detector as sensitive and as universally applicable as the FID
and TCD detectors used in gas chromatography. The most commonly used HPLC detectors and
their properties are listed in Table 1.1.

Detector Type Sensitivity(g/mL) Linearity
UV-Visible absorption selective 10-10 105
Refractive index universal 10-7 104
Fluorometric selective 10-11 105
Amperometric selective 10-12 105
Conductometric selective 10-8 103

Table 1.1 HPLC Detectors

UV-visible absorption detectors are based on the absorption of ultraviolet or visible radiation by
components as they pass out of the column. Three types of UV-visible detectors are available:
fixed-wavelength, variable-wavelength, and photodiode-array. Fixed-wavelength detectors use
discrete light sources which emit light at several wavelengths. Each wavelength can be selected
by use of narrow bandpass filters. A fixed-wavelength detector with a mercury lamp as the
source has useful emission lines at 254, 280, 313, 334, and 365 nm. These detectors are simple,
stable, sensitive, and inexpensive. However, only the solutes that absorb at the given
wavelengths will be detected. Variable wavelength detectors use continuous light sources in
combination with a monochromator. These detectors offer unlimited selection of UV and
visible wavelengths. Photodiode array detectors consist of a continuous light source, a
monochromator, and silicon diode array detector. These detectors simultaneously monitor all

12



wavelengths. An entire spectrum can be collected and stored as each separated species passes
out of the column. Photodiode array detectors are especially useful during the development of a
new LC method because they help the analyst identify the optimal detector wavelength. UV
visible detectors are selective in that they respond only to species that absorb ultraviolet or
visible radiation. Detectable species include the unsaturated hydrocarbons, including aromatics,
and compounds that contain atoms such as nitrogen, oxygen, sulfur, and halogen.

Refractive index (RI) detectors are based on difference in refractive index between the mobile
phase (reference) and the column eluent. Because most substances differ in refractive index,
the refractive index detector is universal in response. However, this detector is not very
sensitive and is seldom useful for trace-level components. Its universal response usually
precludes its use in gradient elution procedures where the changing mobile phase composition
results in drifting baselines. Refractive index detectors are extremely sensitive to temperature
changes and flow rate fluctuations.

Fluorometric detectors respond to the fluorescent emission of molecules that have been
electronically excited by a suitable source. Fluorometric detectors are more selective and more
sensitive than UV-visible absorption detectors. The detector's selectivity is due to the fact that
not all molecule fluoresce. Compounds that can be detected include pollutants such as the
polynuclear aromatics and biologically significant species such as vitamins, alkaloids, and
catecholamines. The extreme sensitivity of fluorometric detectors results from a low
background level of fluorescence. This detector can be used with gradient elution.

Amperometric detectors are based on the measurement of current flow as analytes in the eluent
undergo oxidation or reduction at an electrode. Typical amperometric detector cells have a
three-electrode arrangement consisting of a working electrode (which detects the analyte), an
inert reference electrode, and an auxiliary electrode. A potential is applied between the working
and reference electrodes, while current flows between the working and auxiliary electrodes.
The working electrode composition is important because it determines the range of potentials
that can be applied and, therefore, the species that can be detected. Dual electrode detector cells
have two working electrodes which can be placed in series or in parallel with the flowing
eluent. In the series configuration, the upstream electrode produces an electrochemically active
product that can be detected at the downstream electrode. This approach enhances the
selectivity of the detector, and also enhances sensitivity by reducing background noise due to
mobile phase electrolysis. In the parallel configuration, the two working electrodes are held at
different potentials. The ratio of currents measured at the two electrodes provides an indication
of the peaks purity and identity. Amperometric detectors are more sensitive and more selective
than UV-visible and RI detectors. Amperometric detection is widely applicable. However,
amperometric detectors are not widely used due to several disadvantages. Amperometric
detectors adversely respond to fluctuations in eluent flow rate. Many compounds adsorb onto
the electrodes, requiring frequent and time-consuming cleaning and recalibration. Operation in
the reductive mode may require exclusion of oxygen from the system and the use of mercury
electrodes.

Conductivity detectors measure the ability of the eluent to carry an electric current under the
influence of a potential gradient. These detectors respond to species that form ions in solution
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(electrolytes). Conductivity detectors are used with ion chromatography.

The mobile phases used in ion chromatography are ionic solutions which produce a high
background conductivity. To detect analytes, the eluent conductivity must be suppressed.
Membrane suppressors are used for anion (and cation) exchange separations. The eluent is
passed over one side of a cation (or anion) exchange membrane. The membrane is continuously
regenerated by flowing an acidic (or basic) solution over the other side of the membrane.

Mass spectrometer detectors provide both structural and quantitative information. Interfacing
liquid chromatography with mass spectrometry has been difficult because of the mismatch
between the large mass flow rates used in liquid chromatography and the vacuum requirements
of mass spectrometry. Several interfaces have been developed. In the moving-belt interface,
the column effluent is deposited on a continuous moving belt. The belt moves through a heated
chamber, where the solvent is evaporated, and into the ion source of the spectrometer. In the
thermospray interface, the column effluent is passed through a heated capillary tube to produce
an aerosol of solvent vapor and analyte molecules. When polar mobile phases containing a salt
(such as ammonium acetate) are used, the analyte can be ionized through charge exchange with
the salt. When nonpolar or weakly ionizable mobile phases are used, an electron beam is used
to achieve ionization.
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1.2.  Spectroscopy and Spectrometry

This section introduces the fundamental principles of spectroscopy, and
describes specific instrumental methods based on these principles.  Absorption,
emission, or scattering of electromagnetic radiation alters the energy state of the
interacting atom or molecule. Because each chemical species has characteristic energy
states, a species interacts only with a particular region or energy range of the
electromagnetic spectrum. The energy at which interaction occurs can be used to
identify the interacting species, and the intensity of the interaction can be used to
quantify its concentration.

Spectroscopic methods are based on absorption, emission, or scattering of elec-
tromagnetic radiation by matter. Electromagnetic radiation is a form of energy that is
transmitted through space at the speed of light (3 x 108 m/s). Electromagnetic radiation
can be described in terms of a wave model.  An electromagnetic wave consists of
electrical and magnetic field components which oscillate in planes perpendicular to each
other and to the direction of wave propagation. The electrical field component of
electromagnetic radiation is responsible for most of its interactions with matter. Figure
1.7 depicts the electrical field component and illustrates several parameters used to
characterize electromagnetic radiation.

-«l— wavelength, A —be~

amplitude, A

time or distance

Figure 1.7. Electromagnetic Wave

The wavelength, 1, is the distance between successive maxima or minima of either the
electrical or magnetic component. The frequency, u, is the number of waves that pass a
fixed point in a unit of time, usually a second. Frequency is determined by the source of
the radiation and remains unchanged by propagation of the wave through matter. The
velocity of propagation, v, is the rate at which the wave passes through a medium. The
velocity of electromagnetic radiation in a vacuum, ¢, is 3 x 108 m/s. Due to interactions
between the electric field component and matter, electromagnetic radiation is propagated
or transmitted through matter at velocities less than c. The ratio of the speed of lightin a
vacuum to the speed of light in a medium is the refractive index h of the medium.
Because the frequency is invariant, the wavelength must also decrease as radiation
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passes from a vacuum to another medium. The wavenumber, , in units of cm-! is the
number of wave crests that occur per centimeter. Wavenumbers are often used instead
of frequency, and can be calculated as:

v=1/Aorv=—
C

The radiant power, P, is the amount of energy transmitted per second and is proportional
to the square of the wave amplitude, A.

Refraction, diffraction, and interference are phenomena that can readily be
explained by the wave model. However, absorption and emission of electromagnetic
radiation by matter can be described only by treating radiation as a stream of discrete
particles or quanta of energy known as photons. The energy of a photon depends upon
the frequency of the radiation, and is given by:

E=hv
where E is in joules, and h is Plank's constant (6.62x10-34 ] sec).

The quantum model is needed to describe photoionization, the emission of
electrons from the surface of a solid when a sufficiently energetic radiation impinges on
the surface. The energy of the emitted electrons is related to the frequency of incident
radiation:

E=hv-w

where the work function, w, of the solid is the work required to remove an electron. The
number of emitted electrons is dependent on the number of impinging quanta of
radiation having a certain minimum energy.

Figure 1.8 on the next page depicts the electromagnetic spectrum, the broad
range of radiations that extend from gamma rays to radio waves. The various types of
electromagnetic radiation differ in frequency, wavelength, and nature of interaction
with chemical species.
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Figure 1.8. Electromagnetic Spectrum

Low-energy radio waves cause reorientation of nuclear spin states in materials placed in
a magnetic field. Photons in the microwave region cause changes in rotational energy
states of molecules. Absorption of infrared radiation results in changes in both
vibrational and rotational energy states of molecules and complex ions. Absorption of
visible or ultraviolet radiation changes the energy states of outer shell (valence)
electrons. X-ray absorption results in ejection of inner shell (core) electrons (the
photoelectron effect). These interactions of electromagnetic radiation with chemical
species will be described in more detail in the following pages.

When electromagnetic radiation passes through a sample of matter, select
frequencies may be transferred to the sample's atoms and molecules by the process of
absorption. As a result, the absorbing species are promoted from a low energy state to a
higher energy state, or excited state. Most chemical species at room temperature are in
the lowest energy state, a ground state. Absorption, then, usually involves a transition
from the ground state to an excited state. An atom or molecule in an excited state may
return to the ground state by emission, the release of energy as radiation.

According to quantum theory, atoms and molecules exist only in a limited
number of discrete potential energy levels. The energy of the impinging photon must
match the energy difference between the ground state and an excited state of the
absorbing particle for absorption to occur. Similarly, energy lost by emission of
radiation must match the energy difference between an excited state and the ground
state, or between two excited states. Because these energy differences are unique for
each atom or molecule, the energies (frequencies) at which a species absorbs or emits
radiation can be used to identify the species.

Absorption or emission of radiation is accompanied by transition of electrons
between fixed energy levels. Ultraviolet and visible radiation are sufficiently energetic
to cause transitions of outer shell or valence electrons. Absorption or emission of x-rays
leads to transition of inner shell, or core, electrons.

Molecular spectra are more complex than atomic spectra due to an increased
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number of energy states available. The potential energy of a molecule is the sum of the
electronic, vibrational, and rotational energies. Normally, several rotational energy
states exist for each vibrational energy state, and several vibrational states exist for each
electronic state. The schematic energy level diagram in Figure 1.9 shows some of the
electronic and vibrational states of a molecule. Lines labelled Ej, represent electronic
energy states. Eq refers to the electronic ground state, E; and Ep refer to first and
second electronic excited states. Several vibrational energy levels (labelled vQ, to v3)
are pictured for each electronic state. The energy differences between adjacent
electronic states is 10 to 100 times greater than the energy differences between adjacent
vibrational states. The figure also illustrates two analytically useful processes,
absorption and fluorescence.
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Figure 1.9. Molecular Energy Levels

1.2.1 Atomic Spectroscopy

Atomic spectroscopy is used to determine the concentration of a particular
element in a sample, regardless of the chemical environment and oxidation state of the
element. Atomic spectroscopic methods are listed in Table 1.2. In each method, the
molecular components of the sample are converted to free atoms by the process of
atomization. In atomic emission spectroscopy (AES), absorption of additional thermal
energy from the atomization device transforms the free atoms to excited electronic
states. As the excited atoms return to the ground state, they emit ultraviolet or visible
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radiation at wavelengths characteristic of the atoms present in the sample. The intensity
of the emitted radiation is measured, and is the basis of the analytical determination. In
atomic absorption spectroscopy (AAS), the atoms are transformed to excited states by
absorption of radiant energy from an external ultraviolet/visible light source. The
analytical determination is based on the amount of radiant energy absorbed. In atomic
fluorescence spectroscopy (AFS), the atoms are excited by a radiation source placed at
90° to the optical axis of the spectrometer. Quantitation is based on the intensity of
radiation emitted as fluorescence. The basic components of instruments used for AES,
AAS, and AFS are compared in Figure 1.10. All instruments used for atomic
spectroscopy include an atomization device, a monochromator to resolve the emitted or
transmitted light into its component wavelengths, and a detector for ultraviolet/visible
radiation. AtomiC Spectroscopic instruments differ primarily in atomizer type, the
absence or presence of an external light source, and orientation of the components.

/‘—1 photon readout
monochromator detector device
AES
uv-visible — ] ( photon readout
source monochromator detector device
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atomized
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sample
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Figure 1.10. Instruments for Atomic Spectroscopy
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Atomic spectroscopic methods are frequently classified according to atomizer
type. The most commonly used atomizers are the combustion flame, the electrothermal
analyzer, and the plasma. Flame atomizers are used for AES, AAS, and AFS.
Electrothermal atomizers are primarily used for AAS and AFS, whereas plasma sources
are used for AES and AFS.

Technique (Abbreviation) Atomization Source ( Temperature)

Flame atomic absorption spectroscopy Flame (1700-3200° C)
(FAAS)

Electrothermal atomic absorption Furnace (1200-3000° C)
spectroscopy -

Flame emission spectroscopy (FES) Flame (1700-3200° C)
Inductively coupled plasma atomic Argon plasma (6000-8000° C
emission spectroscopy (ICP/AES)

Direct current argon plasma Argon plasma (6000-10000° C)
spectroscopy (DCP)

Arc-source emission spectroscopy Arc plasma (4000-6000° C)
Spark-source emission spectroscopy Spark plasma

Atomic fluorescence spectroscopy (AFS)  Flame (1700-3200° C)

Electrothermal atomic fluorescence Furnace (1200-3000° C)
spectroscopy
Inductively coupled plasma atomic Plasma (6000-8000° C)

fluorescence spectroscopy (ICP/AFS)

Table 1.2 Atomic Spectroscopy Methods

In the following section, the atomic spectroscopic techniques most commonly
used will be discussed. These techniques are: flame atomic absorption spectroscopy,
electrothermal atomic absorption spectroscopy, and inductively coupled plasma/atomic
emission spectroscopy.

1.2.2 Flame and Electrothermal Atomic Absorption Spectroscopy
Atomic absorption spectroscopy is a sensitive technique for the quantitative

determination of approximately seventy metallic or metalloid elements in solution
matrices. The basic instrumental components were shown above in Figure 1.10.
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Electrothermal and flame atomizers are used in atomic absorption instruments.
Flame atomizers consist of a nebulizer and a burner. The nebulizer transforms the liquid
sample into an aerosol which is introduced into the burner. Figure 1.11 illustrates the
two main types of burners: the total consumption (turbulent flow) and laminar flow

burners.
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Figure 1.11. Atomizers for Atomic Absorption Spectroscopy

In the total consumption burner, the nebulizer and burner are combined into a
single unit. The oxidant flow around the sample capillary tip draws the sample up the
capillary and into the burner. Fuel gas mixes with the oxidant and the sample, and helps
to break up the sample. The flame forms at the top of the burner. Total consumption
burners offer several advantages over laminar flow burners: (1) the entire sample is
aspirated into the flame, eliminating error due to loss of nonvolatile components, (2) no
possibility of flashback or explosion exists (see discussion of laminar flow burner,
below), and (3) the burner is inexpensive and easy to maintain. Disadvantages include:
(1) vaporization and atomization efficiency are low, (2) operators must take special
precautions to prevent clogging of the tip, (3) short flame path length results in
decreased signal in AAS, and (4) total consumption burners are Very noisy, both
electronically and aurally due to turbulence.

In the laminar flow burner, the sample is drawn into a mixing chamber and
nebulized by the flow of oxidant across the capillary tip. A series of baffles in the
mixing chamber remove larger droplets from the sample stream. The remaining aerosol
mixes with additional oxidant and fuel, and passes into the burner head and the flame.
Laminar flow burners offer several advantages: (1) sensitivity is greater due to
relatively long path length (5-10 cm), (2) burner is quiet, and (3) because larger drops
are eliminated in the premix chamber, laminar flow burners seldom clog. Disadvantages

are: (1) in samples containing more than one solvent, the more volatile components
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may be preferentially vaporized in the mixing chamber, while less volatile components
may drain off and not reach the flame (2) the mixing chamber contains an explosive
mixture which can be ignited by a flashback, and (3) most of the sample goes down the

drain.

Conversion of the sample to free atoms in the flame involves a sequence of
events. The sample enters the flame as a solution aerosol. The solvent evaporates or, in
the case of an organic solvent, burns, leaving behind a solid aerosol. The solid particles
undergo volatilization, and then dissociation to form free atoms. These atoms are then
excited by radiant energy from a uv-visible light source. Atomization efficiency is the
efficiency with which the flame produces atoms by this sequence of events. Several
processes can decrease atomization efficiency and, therefore, the analytical response. If
the sample drops are too large, they may pass through the flame without completely
evaporating. Droplet size can change significantly with a change in solvent due to
viscosity differences. The rate at which the sample is introduced into the flame also
effects atomization efficiency because solvent evaporation requires energy and lowers
flame temperature.

Flame atomization surpasses other atomization methods in terms of
reproducibility. However, sampling efficiency of the flame is low because much of the
sample is discarded (in case of the laminar flow burner) or incompletely atomized (in the
case of the total consumption burner), and the residence time of the analyte atoms in the
optical path of the flame is short. The sampling efficiency and, therefore, sensitivity of
other atomization methods is better.

Electrothermal atomizers provide high sensitivity because the entire sample is
atomized quickly and the residence time in the optical path is on the order of seconds.
Compared to flame atomization, electrothermal atomization enhances sensitivity by
factor of 100 to 4000. Electrothermal atomizers can accommodate very small sample
volumes (0.5 - 100 <L) and solid samples. Electrothermal atomizers are electronically
less noisy than flames. However, the precision of electrothermal methods, typically 5 to
10%, compares unfavorably with the 1 to 2% precision obtained with the flame
methods.

An excitation source that emits light having an energy equal to the difference in
energies between the ground state and excited state of the element being analyzed is
used. Hollow cathode lamps are the most common excitation sources for AAS. Hollow
cathode lamps consist of a cylindrical cathode constructed of the element being
analyzed, and a tungsten anode, both sealed in a glass tube filled with an inert gas.
When a sufficiently large potential is applied across the electrodes, the inert gas ionizes,
forming highly energetic cations. As these cations strike the cathode's surface, atoms
on the surface are dislodged. Some of the metal atoms are in excited electronic states
and emit lines of radiation characteristic of the cathode element as they return to the
ground state. Usually, a different lamp must be used for each element, although some
multielement lamps are available. The source emission is directed through the atomized
sample in the flame or furnace. The light not absorbed by the sample passes through to
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the monochromator and the detector. The absorbance is calculated from the intensities
of light detected with (I) and without (Iy) the analyte in the flame:

A =log (Iy/D
To absorb the source radiation, an atom in the flame must be of the same element used
in the source lamp. Therefore, the absorbance is element-specific. The absorbance is
also directly proportional to the analyte's concentration.

1.2.3 Inductively Coupled Plasma/Atomic Emission Spectroscopy

Inductively coupled plasma/atomic emission spectroscopy is used for the
qualitative and quantitative analysis for over seventy elements in solution. ICP/AES is
capable of multi-element analysis, performed in either a simultaneous or rapid sequential
mode. This technique is used for determination of major, minor and trace level

elements.

In ICP/AES the sample is atomized by an argon plasma sustained by inductive
coupling to an tF (radio frequency) field. An ICP torch consists of three concentric
quartz tubes as shown in Figure 1.12. An induction coil, powered by an rf generator,
circles the top of the tube assembly. Argon flowing between the two inner tubes is
initially ionized by a spark form a Tesla coil. An annular plasma forms when the
resulting ions and electrons interact with the oscillating magnetic field generated by the
induction coils. The analyte is introduced as an aerosol through the central tube. A gas
(usually argon) flows tangentially between the two outer tubes to contain the plasma and

to cool the quartz cylinder walls.
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Figure 1.12. Inductively Coupled Plasma Atomizer

Samples are usually introduced into the plasma as a solution aerosol generated
by a pneumatic nebulizer. The most commonly used pneumatic nebulizers are the
concentric (or Meinhard) nebulizer and the crossflow nebulizer. In both types, the
sample is drawn through a capillary into a low pressure region generated by the flow of
a gas past the capillary tip. The aerosol produced in the nebulizer passes through a
spray chamber, which removes or breaks up the larger droplets, and into the ICP torch.

When the sample is introduced into the plasma it is atomized and elevated to an
excited state as a result of collisions with the argon ions. The excited analyte atoms
relax to their ground state by emitting photons. The emitted radiation is dispersed by
either a polychromator, for simultaneous multi-element analysis, or by a scanning
monochromator, for sequential multi-element analysis.

In the polychromator, the emitted light is focused onto a concave grating where it
is dispersed into its component wavelengths. Selected spectral lines are isolated by a
series of exit slits. Each line is focused onto a detection device, a photomultiplier tube.
The polychromator permits the simultaneous detection of up to 60 spectral lines
(corresponding to 60 elements). Simultaneous multi-element analysis is especially
useful in applications involving routine analyses of large numbers of samples having
similar elemental composition. In the scanning monochromator, a lens focuses the
emitted light onto a concave mirror, which collimates the light onto a planar grating
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mounted on a computer-controlled stepper motor. The grating disperses the light, and a
final mirror focuses the light onto an exit slit before the detector. The wavelength is
selected by rotating the grating. Only one wavelength can be detected at a given time.
For multi-element analysis, the grating must be driven in a sequential manner to a
position corresponding to the appropriate analytical wavelength for each element to be
measured. The scanning monochromator is more flexible than the polychromator
because it offers a greater choice of analytical wavelengths. This is an advantage in the
development of new methods, or in laboratories where samples vary widely in elemental
composition. '

1.2.4 X-ray Fluorescence Spectroscopy

X-ray fluorescence (XRF) spectroscopy is used for qualitative and quantitative
multi-element analysis. XRF can qualitatively identify all elements of atomic number
greater than eleven, and quantitatively measure all elements of atomic number greater
than fourteen present within a sample at the parts-per-million (ppm) or greater level.
This technique is extremely useful because it is readily applicable to most solid and
liquid samples with minimal sample preparation.

XREF is based on the emission of characteristic x-ray lines by atoms following
excitation by high energy photons from an x-ray source. The most commonly used x-
ray source is the x-ray tube which consists of a tungsten filament cathode and a target
anode, both sealed within a highly evacuated tube. Electrons are thermally emitted from
the cathode when the filament is heated. These electrons are then accelerated across a
high potential gradient to the target anode. Target materials include copper,
molybedenum, iron, chromium, nickel, silver, and tungsten. X-rays are produced by
bombardment of the target material. X-rays emitted by the source are then directed onto
the sample. Upon absorption of the x-radiation, atoms within the sample become
electronically excited. The excited atoms relax to their ground states by fluorescent
emission of x-rays of characteristic energy. Sample fluorescence is collimated, and then
dispersed by a crystal mounted on a goniometer. The goniometer permits control of the
angle q between the incident collimated radiation and the crystal face. The collimated x-
rays are diffracted from lattice planes within the crystal. The value at which a given
wavelength 1 is diffracted is given by Braggs law, o\ = 2d sin 6, where d is the lattice
spacing of the crystal. X-rays diffracted by the analyzing crystal are detected by gas-
filled detectors or by scintillation counters.

Compared to ICP/AES and AA, XRF is more rapid and more readily applicable
to various samples . However, ICP/AES and AA are more sensitive than XRF.

1.2.5 Infrared Spectroscopy

Infrared spectroscopy (IR) is used to identify organic and inorganic materials, to
elucidate molecular structures, and to quantitatively determine nontrace components of
mixtures. This technique can be applied to solid, liquid, or gaseous samples.
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The infrared region of the electromagnetic spectrum includes radiation with
wavenumbers between 12,800 and 10 cm-1 (wavelengths between 0.78 and 1000 sm).
Most analytical applications make use of the mid-infrared region which encompasses
wavenumbers from 4400 to 200 cm-1.

Absorption of infrared radiation by a molecule results in vibration of the
molecule’s component atoms relative to each other. Two types of vibrations occur:
stretching and bending. Stretching involves a change in the distance between two
atoms, with movement along the bond axis. Bending can occur in any molecule having
three or more atoms and involves a change in the angle(s) between bonds.

A molecule will absorb infrared radiation only when the molecule undergoes a
net change in dipole moment as a result of its vibrational motion. For example, the
hydrogen chloride molecule possesses a significant dipole moment due to non-
symmetric charge distribution between the hydrogen and chlorine atoms. Stretching of
the hydrogen-chlorine bond causes a change in dipole moment, and absorption of
infrared radiation can occur provided the frequency of the radiation matches the
vibrational frequency. It is not necessary for a molecule to possess a permanent dipole
moment to absorb infrared radiation. For example, due to its symmetry, the carbon
dioxide molecule has no permanent dipole moment. However, two of its three
vibrations produce a change in dipole moment. These vibrations absorb infrared
radiation. Vibration of homonuclear diatomic molecules, such as N> and O, does not
cause a net change in dipole moment. Vibrations of such molecules are not
accompanied by absorption of infrared radiation.

Infrared spectra of diatomic and triatomic molecules are simple. Polyatomic
molecules containing a number of different types of atoms exhibit complex spectra. The
number of possible vibrations within a molecule containing N atoms is 3N-6 (or 3N-5
for a linear molecule). Each of these vibrations is called a normal mode of vibration, and
its frequency is referred to as a fundamental frequency. The number of peaks observed
in the infrared spectrum does not necessarily equal the number of normal modes, Some
normal modes do not give rise to an infrared absorption peak because no net dipole
moment occurs, or the vibrational frequency is beyond the range of the instrument. If
two or more vibrations occur at the same or nearly the same frequency, only one peak
may appear. Additional peaks may be observed in the spectrum due to interaction or
coupling of two normal modes. Overtone lines appear at approximately two and three
times the fundamental frequency. The occurrence of multiple vibrations in a molecule
gives rise to a complex spectrum that is uniquely characteristic of the molecule.

The frequency at which an organic functional group (such as C-H, C=0, C=0)
vibrates is determined by the masses of the atoms involved and the force constant of the
bond between them. This frequency, called a group frequency, is often unchanged, or
only slightly changed, by other atoms attached to the functional group. Over the years,
group frequencies have been determined empirically for a large number of functional
groups and are commonly summarized in correlation charts, as shown in Figure 1.28
and 1.29. Group frequencies are used to establish the presence or absence of a
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functional group in a molecule. Fingerprint frequencies are due to vibrations of the
molecule as a whole and are characteristic of the specific molecule.

Several types of infrared instruments are commercially available. Most widely
used are the dispersive instruments, which use a grating for wavelength selection, and
the popular nondispersive Fourier Transform Infrared (FTIR) spectrometer, which uses
an interferometer. Whether dispersive or nondispersive, each infrared instrument
contains three essential elements: a radiation source, an optical system for wavelength
selection, and a detector. The components of an FTIR instrument are shown in Figure
1.13.

Figure 1.13. Schematic of an Infrared Spectrometer

Mid-infrared sources include the incandescent wire, the Nernst glower, and the
Globar. The incandescent wire source consists of a tightly wound coil of nichrome wire
electrically heated to about 1100° C. The Globar is a silicon carbide rod electrically
heated to about 1300°C. The Nernst glower is composed of zirconium, yttrium, and
erbium oxides electrically heated to about 1500° C. Globar and Nernst glower sources
are hotter and, therefore, more intense than the incandescent wire source. However, the
incandescent wire is more rugged and requires less maintenance.

Two types of detectors are used in the mid-infrared region: thermal and photon .
In a thermal detector the infrared radiation is absorbed by a detector element. The
resultant rise in temperature produces a measurable change in a physical property of the
detector. A thermal detector may consist of several thermocouples, each fabricated from
two dissimilar metals. When a thermocouple absorbs infrared energy, a measurable
potential difference develops at the junction of the two metals. Another type of thermal
detector is the pyroelectric detector. In this device, the sensing element is a thin crystal
of a pyroelectric material, such as deuterated triglycine sulfate (DTGS), between two
electrodes. Heating of the crystal by absorption of infrared radiation alters the
polarization of charge within the crystal, and a measurable change in capacitance is
produced. In a photon detector, infrared photons striking a semiconductor surface excite
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electrons on the surface from a nonconducting energy state, or valence band, into a
conducting state. The photovoltaic detector is a type of photon detector in which a small
voltage is produced in response to infrared radiation exposure. Two examples of the
photovoltaic detector are the lead tin telluride detector and the mercury cadmium
telluride detector. Photon detectors respond more rapidly than the thermal detectors, but
the two types have similar sensitivities.

Infrared spectra can be obtained for gaseous, liquid, and solid samples. Most
widely used as cell windows are the alkali halides, especially sodium chloride and
potassium bromide. Unfortunately, these materials are fogged by exposure to moisture.
Silver chloride can be used for aqueous solutions or most samples. However, silver
chloride darkens with continued exposure to light.

Solid and liquid samples can be analyzed in solution. No single solvent is
transparent over the entire infrared region. To obtain the entire spectrum of a sample,
two or more solvents must be used. Carbon tetrachloride and carbon disulfide are useful
for many organic compounds. Carbon tetrachloride is transparent at wavenumbers
above 1333cm-1, whereas carbon disulfide is transparent below 1333 cm-1. Acetone,
acetonitrile, chloroform, and methylene chloride are used for polar materials that are
insoluble in carbon tetrachloride and carbon disulfide. Because alkali halide cell
windows are attacked by moisture, solvents must be dried before use. Water absorbs
strongly in the infrared and is seldom used as a solvent for infrared analysis. Infrared
cells for solution samples are commonly constructed with sodium chloride windows
separated by Teflon spacers or gaskets. Because solvents absorb infrared radiation, path
lengths are short (0.005 to 5 mm). Both variable path length and fixed path length cells
are available.

When a suitable solvent is not available, spectra of liquids can be obtained from
capillary films. A drop of liquid is placed between two windows, which are squeezed
together to give a thin (0.001 to 0.05 mm) film. This technique does not give a
reproducible path length and is limited to qualitative investigations.

Spectra of solids not soluble in a suitable solvent are often obtained from a
dispersion of the solid sample in a solid or liquid matrix called a mull. To prevent signal
loss due to scattering or refraction of the infrared radiation, the sample must be
thoroughly ground to a particle size smaller than the analytical wavelength (less than
2+m) and dispersed in a mulling agent whose refractive index is close to that of the
sample. For best results, a very small amount (less than 10-20 mg) of sample is ground
in an agate mortar until the powder forms a glossy cake on the sides of the mortar. The
resulting powder is then mixed with the mulling agent.

Mineral oil (Nujol) is frequently used as a liquid mulling agent. If hydrocarbon
bands interfere, a chlorofluorocarbon grease (Fluorolube) or hexachlorobutadiene may
be used. To obtain a complete spectrum free of interfering bands, the halogenated
agents are used for the 4000 to 1340 cm-! region, and mineral oil is used below 1340
cm-l. One or two drops of mulling oil are added to the powder in the mortar, and the
grinding action continued until the solid is uniformly dispersed in the oil. The resulting
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paste is then analyzed as a thin film.

Potassium bromide and other alkali halides are used as solid mulling agents. In
the KBr mull or pellet technique, the finely ground sample (up to 1 mg) is intimately
mixed with approximately 100 mg powdered KBr. The mixture is then pressed in a die,
under a pressure of 10,000-15,000 psi, to form a transparent or translucent disc. Better
results are often achieved when the die is evacuated to eliminate occluded air. Adequate
KBr pellets can be obtained without evacuation in a stainless steel Mini-Press. This
device consists of two highly polished bolts within a cylindrical nut. The KBr mixture is
placed between the bolts, and the bolts are tightened against each other to produce a
pellet.

The KBr pellet method has several advantages: (1) KBr has no interfering
bands, (2) quantitative analysis is readily possible with an internal standard, and (3) the
formed pellets can often be stored. However, the method also has disadvantages: (1)
Some materials decompose or change form under the pressure and heat encountered
during pellet formation, (2) inorganic salts may exchange ions with the KBr, and (3)
KBr may absorb water which absorbs near 3450 and 1640 cm-1.

Polyurethane and polyisocyanurate foams, cork, and epoxy resins are examples
of materials that cannot be reduced to a powder by grinding in a mortar. A mechanical
grinder or ball mill can be used for such materials. Grinding efficiency may be
enhanced by first freezing the sample with liquid nitrogen.

Polymers can be analyzed as unsupported films. A polymer solution is poured
onto a glass or metal casting plate. The solvent is evaporated in a vacuum oven or under
an infrared lamp, and the sample film is stripped from the plate. Samples run as
unsupported films frequently exhibit interference fringes which interfere with the
spectrum. In these cases, the attenuated total reflectance (ATR) technique, described
below, is extremely useful.

Attenuated total reflectance ATR (also called internal reflectance) greatly
enhances the sampling capability of infrared spectroscopy. With this technique, infrared
spectra can be obtained from solid materials that cannot be readily dissolved, dispersed
in mulls, or cast as films. ATR is widely used to sample polymers, rubbers, cured resins,
fibers, textiles, and papers. Figure 1.14 shows an internal reflection element (IRE),
composed of a transparent material of high refractive index, surrounded by a sample.
When radiation passes from a more dense medium into a less dense medium, part of the
radiation is transmitted through the interface and part is reflected. The fraction of the
radiation that is reflected increases as the angle of incidence at the interface between the
two media becomes larger. Beyond a certain critical angle, all of the radiation is
reflected. During the reflection process, the radiation penetrates a very small distance
into the sample, and a portion of the radiation is absorbed by the sample. The loss in
intensity due to sample absorption is sensed by the detector.
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Figure 1.14. Attenuated Total Reflectance Apparatus

1.2.6 Raman Spectroscopy

Raman spectroscopy is used primarily for the identification of functional groups
and the determination of molecular structure in organic and inorganic compounds.
Similar to infrared spectroscopy, Raman spectroscopy is based on vibrational changes
within molecules. However, vibrations that are observed in the Raman specrum may
not be seen in the infrared spectrum, and vice versa. Therefore, complimentary
information can be obtained from using both techniques.

Raman spectroscopy is based on a light scattering phenomenon. When light
passes through a transparent material, a very small fraction of the light is scattered due
to collisions with molecules present within the material. Two types of collisions occur:
elastic and inelastic. In an elastic collision, the scattered light is of the same energy as
the incident light. However, in an inelastic collision, energy is exchanged between the
molecule and the incident radiation so that the energy of the scattered light is different
from that of the incident light. This is known as the Raman effect. When this type of
collision occurs, the energy of the scattered light is h(ng * np) where h is Plank’s
constant, n( is the frequency of the incident radiation, and ny is a frequency in the
infrared region of the electromagnetic spectrum. The Raman effect is inherently very
weak. The intensity of the Raman scattered light is, at most, only 0.001% the intensity
of the source radiation.

Inelastic collisions give rise to two types of scattered radiation: Stokes radiation
and anti-Stokes radiation. Stokes radiation, observed at a lower energy that the incident
radiation, occurs when a molecule initially in the ground vibrational level is raised to an
excited vibrational level as a result of interaction with the incident light. The energy of
the Stokes radiation is h(ng-np) where hny is the difference in energy between the
ground vibrational level and the excited vibrational level. Anti-Stokes radiation occurs
when molecules already in an excited vibrational level decay to the ground vibrational
level during the interaction with the incident light . Anti-Stokes radiation is observed at a
higher energy than the incident radiation. The energy of the anti-Stokes scattered
radiation is h(ng+np). Because most molecules are initially in the ground vibrational
level, anti-Stokes radiation is much less intense than Stokes radiation. Except for very
specialized applications, the Stokes lines are predominantly used in analytical Raman
spectroscopy.
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In the previous section, it was stated that for a vibration to be observed in the
infrared spectrum, the vibration must cause a change in the molecule’s dipole moment.
The dipole moment is the product of the distance between two centers of charge in a
molecule and the magnitude of the charge difference. Polar function groups such as
hydroxyl (O-H) and carbonyl (C=0) give strong peaks in the infrared. For a vibration to
be observed in the Raman spectrum, the polarizability of the molecule must change as a
result of the vibration. Polarizability is the measure of the ease with which the electron
distribution within the molecule is distorted in an electromagnetic field. Nonpolar
functional groups with symmetrical charge distribution, such as C=C, N=N, S-S, and
C=C, give strong Raman peaks. Some vibrational modes can be observed in both the
Raman and infrared spectra. Other vibrations can be observed only by infrared
spectroscopy, or only by Raman spectroscopy. Therefore, although each technique
provides considerable information about the functional groups present in a molecule,
more information is obtained by using both techniques to characterize a material.

Raman spectroscopy is especially useful for detecting the C=C group in olefins.
The C=C stretching mode is usually very weak in the infrared spectrum. When the C=C
group is symmetrically substituted, as in ethylene (HpC=CHy), no band appears in the
infrared spectrum because there is no change in dipole moment during the vibration. On
the other hand, this group gives an intense peak in the Raman. Similarly, Raman
surpasses infrared in detecting disubstituted acetylenes (R-C=C-R) and disulfides
(R-S-S-R). Even in cases where the two R groups are not identical, but only similar in
size, the intensity of the Raman peak will be stronger than that of the infrared peak.
Raman spectroscopy can also be used to detect and analyze homonuclear diatomic
molecules, such as Hy or Np, which are not infrared active. Another area in which
Raman spectroscopy is useful is the study of materials in aqueous solution. Water is a
weak Raman scatterer and therefor does not cause interference. In contrast, it is difficult
to obtain infrared spectra from aqueous solutions because water absorbs strongly in the
infrared. .

A typical Raman spectrometer is shown schematically in Figure 1.15. Because
of the inherent weakness of the Raman effect, lasers are used almost exclusively as
sources in Raman spectroscopy. The most commonly used lasers are continuous-wave
gas lasers. The helium/neon laser produces an intense line at 632.8 nm. The argon laser
produces useful lines at 488.0 and 514.5 nm. The laser beam is focused on the sample
by a series of lenses and mirrors. Because both the incident and scattered radiations are
in the visible region of the electromagnetic spectrum, glass can be used for cell
windows, lenses, and other optical components. The scattered light is collected at 90
relative to the laser beam and is focused on the entrance slit of a double monochromator.
The scattered light is dispersed into its component frequencies by gratings within the
monochromator, and the dispersed light passes through the monochromator exit slit into
the detector. The most commonly used detector for Raman spectroscopy is the
photomultiplier tube (PMT). PMT's give low background signals and high sensitivity in
the visible region of the spectrum. Because PMT response is a function of wavelength,
the type of PMT used depends on which laser line is used for excitation.
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Figure 1.15. Schematic of a Raman Spectrometer

Raman spectroscopy can be performed on solids, liquids, and gases. Liquids are
usually contained in a glass capillary tube. Solids are sampled in several ways: as pure
powders in a glass capillary tube, as pressed pellets (either pure or mixed with an inert
solid), and as single crystals. A visible light microscope can be coupled to the optical
system and can be used to obtain spectra from microscopic particles. A major limitation
to Raman spectroscopy is interference by fluorescence originating either in the analyte
itself, or in other species present in the sample. Because fluorescence is inherently more
intense than Raman scattering, it is difficult if not impossible to detect Raman scattering
in the presence of fluorescence. If the fluorescence is due to other species present, it
may be possible to remove the fluorescent component by extraction, distillation, or
another purification procedure. If the fluorescence is due to the analyte itself, selection
of a different laser line for excitation may be helpful. Another problem is the
decomposition of the sample in the laser beam. This occurs frequently when the sample
is highly absorbing (colored). This problem can sometimes be overcome by rotating the
sample or by reducing the power of the laser source.

1.2.7 Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is used primarily to elucidate
the structure of organic and inorganic compounds containing atoms which possess a
magnetic moment, such as 1y, 13C, 19F, 295i, and 31p.

When the nuclei of certain atoms spin, a magnetic moment is generated. If these
nuclei are placed in a strong magnetic field, the magnetic moments will assume different
orientations with respect to the external field. Each orientation corresponds to a discrete
energy state. Absorption of radio-frequency radiation causes a nucleus to undergo a
transition from one orientation to another. The required energy of the radio-frequency
radiation depends, in part, on the the identity of the nucleus and chemical environment
of the nucleus. Therefore, this technique is extremely useful in the determination of
molecular structure.

The components of a Fourier transform NMR spectrometer are shown in Figure
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1.16. In this instrument, all of the nuclei are excited simultaneously by a pulsed, high
intensity radio-frequency source. This generates a time-domain spectrum that is
converted to frequency-domain by Fourier transformation. A computer controls the
pulses and performs the Fourier transformation.
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Figure 1.16 Schematic of a Nuclear Magnetic Resonance Spectrometer

Two effects are important in structural analysis: chemical shift and spin-spin
splitting. Not all nuclei of the same type (e.8., 14 or 13C) absorb at the same frequency.
The frequency at which absorption occurs is strongly affected by the chemical
environment of the nucleus. This effect, called the chemical shift, is due to the
circulation of electrons around the atom being probed. Electron circulation generates a
small magnetic field which is usually in opposition to the external field. The field
actually sensed by the nucleus depends on the electron density and, therefore, the
chemical environment around the nucleus. NMR peaks are usually reported relative to
the peak obtained for 2 reference compound that is measured at the same time.
Neighboring nuclei which have nonzero magnetic moments generate magnetic fields.
This effect causes splitting of the NMR peaks and is called spin-spin splitting.
Structural analysis is based on an analysis of the chemical shifts and spin-spin splitting
observed in the NMR spectrum.

1.2.8 Mass Spectrometry

Mass spectrometry provides qualitative and quantitative information about the
atomic and molecular composition of organic and inorganic materials. This technique is
used to elucidate the molecular structure of unknown compounds, and to confirm the
presence of known compounds. Combined with a separation technique, such as gas or
liquid chromatography, mass spectrometry can also be used to identify and
quantitatively measure the components of a complex mixture.

In mass spectrometry, molecules within a sample are converted into highly ener-
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getic, gaseous ions. During the ionization process, the molecule may be fragmented to
produce smaller ions. These ions are then separated on the basis of their mass-to-charge
(m/z) ratios. A mass spectrum is a plot of the relative abundance of ions measured at
each value of m/z. Every compound has a unique fragmentation pattern, and therefore a
unique mass spectrum.

The major components of a mass spectrometer are pictured in Figure 1.17. The
sample introduction system must permit introduction of the sample into the ion source,
which is maintained at 10-5 to 10-6 Torr. Sample introduction systems include batch
inlets, direct insertion probes, and gas and liquid chromatographic inlets. Gases and
volatile liquids can be introduced through a batch inlet system in which the sample is
first volatilized (by applying vacuum and, sometimes, heat) and then allowed to leak
into the ionization chamber through a pinhole in a glass or metal diaphragm. Solids and
nonvolatile liquids can be introduced with a direct insertion probe. The sample is placed
on the probe which is then introduced directly into the ionization chamber. The
chromatographic inlets are described in Section 1.1.
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Figure 1.17. Schematic of a Mass Spectrometer

The jon source ionizes and fragments the molecules within the sample.
Commonly used ionization sources include the electron impact (EI), chemical ionization
(CI), and fast atom bombardment (FAB) sources. The electron impact source is the
most commonly used. Electrons emitted from a heated filament are accelerated by
applying a potential between the filament and an anode. When these high energy
electrons collide with the sample molecules, positive ions are produced. Some of these
ions have the same mass as the original analyte molecule, and are referred to as the
molecular or parent ions. Because of the high energy of the electron impact source,
many of the molecules are extensively fragmented. The fragmentation pattern is
characteristic of the molecule and is useful for identification. However, in some cases
fragmentation is so extensive that the molecular ion is not observed. In these cases, it is
more difficult to determine the molecular weight and, therefore, the structure of the
compound. In chemical ionization, the gaseous sample is ionized by collisions with ions
generated by electron bombardment of a reagent gas, usually methane. Chemical
ionization produces less fragmentation than electron impact ionization. In fast atom
bombardment, the sample is ionized by collisions with high energy argon or xenon
atoms. Fast atom bombardment produces relatively large amounts of the parent ion, and
is especially useful for the characterization of high-molecular-weight materials.
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After leaving the ion source, the ions are accelerated and focused onto the
entrance of the mass analyzer. The mass analyzer separates the ions according to their
mass-to-charge ratios. The magnetic sector and the quadrupole mass analyzers are the
most commonly used. Magnetic sector mass analyzers utilize an electromagnet to bend
the paths of the ions. Ions of different mass are alternately focused on the exit slit by
varying the strength of the magnetic fields. In quadrupole mass analyzers, four
electrically conducting rods are positioned parallel to and symmetrically around the ion
path. Opposite pairs of rods are electrically connected, and one pair is held at a positive
dc potential, while the other pair is at a negative dc potential. In addition, radio-
frequency ac potentials, 180° out of phase with each other, are applied to the two pairs.
The combined electromagnetic fields cause the ions to oscillate as they pass along the
axis of the quadrupole. When the oscillations are sufficiently large, the ions collide with
the rods and are neutralized. By varying the dc potential and/or the frequency of the ac
field, ions of different mass-to-charge ratio are allowed to pass through the analyzer.

Most mass spectrometers use electron multipliers for ion detection. Ions leaving
the mass analyzer are accelerated and focused onto a metal plate, or dynode. The
dynode emits several electrons as a result of each ion bombardment. These electron are
accelerated toward a second dynode, where more electrons are emitted. As the electrons
strike successive dynodes, the amplification process continues. Current amplification of
105 to 107 is attained.

1.3 Microanalytical Techniques

The advent of high technology has brought about the need to interrogate smaller
and smaller samples of materials to solve complex materials problems. From the
concerns of particulate contamination in high performance aerospace engines to the
performance of magnetic storage media there is a great demand for the capability to
analyze very small quantities of materials. And with this demand for analysis comes the
necessity to successfully collect and test the material of interest. When the sample
comes from an almost endless source such as in the production of commodity materials,
the problem is not too little sample, but in contamination or failure investigations the
samples are usually limited and hard to recover. This section will describe sampling and
detection methods for microscopic analysis. Sampling techniques will be discussed in
detail since this topic is seldom covered in instrumental analysis text books.

1.3.1. Microsampling Techniques

Microsampling techniques are usually applied to materials with limited quantity
and can either be solids or liquids. The solid samples can include particles, fibers, films,
laminates, inclusions, suspensions or residues. Each of these materials requires a
different approach to their collection. Another confounding aspect to the sampling is the
accessibility of the material. If the material of interest is under a film as an inclusion or
in a solid mixture as a discrete particle the analyst must be creative, and sure-handed to
retrieve the materials.
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Some of the tools that can be used for microsampling include tweezers with
sharpened tips, Exacto knives and single-edged razor blades, tungsten probes that have
been formed into fine points, glass slides, capillary brushes, Roller Knife and maybe the
most important is a prep microscope. The prep microscope is used to see samples when
they are being transferred or prepared for analysis. The prep microscope can have
magnification from 10x to 50x and should have the capability for transmission and
reflectance imaging. It should have a substantial fixed stage that will support some
force in forming samples. Any variation from the Bausch and Lomb StereoZoom series
or equivalent would be a good choice. Pamphlets 1, 2 supplied with the microscope
give some instruction as to the use of the microscope but experience from others or with
time will better develop knowledge needed in specific applications. Publications such as
"The Microscope"3 is also a good source of information for microscopic sample
collection.

Collecting samples in the field requires many specialized tools to effectively
isolate and collect the sample. Along with the techniques and tools to be described later
there are several items that are useful and should be included in a Microscopists tool kit.
The most important of these items is a magnifier. This is almost a necessity since to
sample it is necessary to see the object. The magnifier can be used with a flashlight or
can be equipped with an appropriate illuminator as an integral part of the magnifier.
Sample transfer from the point of sampling is also important since the effort expended in
sampling can be negated if the sample is lost or contaminated with unrelated foreign
matter. Foresight in selecting sample containers that have been previously inspected for
microcontamination will benefit the analyst in the long run. Plastic petrie dishes and
self-sealing bags are convenient but require prior inspection to assure that particles are
not present as a result of static attraction or contamination during production.

1.3.1.1. Particulate Sampling

Particulate sampling is probably one of the easier sampling problems but by no
means simple. Particulates that are loosely adhered to a surface can be easily removed
using tweezers with very sharp, straight points. This fact needs to be emphasized; don't
share the sampling tools that you accumulate with anyone that is not familiar with their
use. It might seem trivial that anyone can use tweezers but to care for a finely sharpened
pair and then have them used as a pry to remove a stuck septa or ferrule can be very
disconcerting. Particles that are brittle, very flat or adhere strongly to the substrate may
require the use of a sharp blade such as a single-edge razor, or an Exacto knife.
Cleanliness is paramount when using any sampling device and should be of special
concern with blades. A small foreign particle on the blade prior to collection of the
sample can become a point of contention when the sample is analyzed because this
foreign particle can be misconstrued as part or a major portion of the suspect. The use
of lens paper or lint-free laboratory wipes to clean the sampling tools prior to use
followed by subsequent inspection using a microscope to observe cleanliness is a
minimum.
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In dry atmospheres charges tend to accumulate on sampling tools and particles.
With loose samples this can manifest itself in the "Calivaris County Frog Syndrome”
where the precious sample that is setting so pristinely on the substrate leaps
uncontrollably out of sight. This charge concentration phenomena can be eliminated by
using a static discharge gun such as a Zerostat gun (Ernest F. Fullam, Latham, N.Y).
Two conditions should be observed when using this static discharge gun. First, never
use the gun in an explosive environment and second, the gun discharges both positive
and negative charges with each stroke ; a positive discharge with the squeeze of the
trigger and negative discharge with the release of the trigger. It is important to discharge
both the sample and the sampling tools prior to sampling. This is a trial and error effort
to select the proper discharge combination that hopefully doesn't end in errors t00
frequently. Of course since opposites attract, static charges can also be a benefit since
they can aid sample collection by causing particles to cling to the sampling tool, a very
fortuitous event.

In addition to the tweezers and blade, a tungsten probe is very useful to push or
hold a particle while using another tool to retrieve it, or if static charges are helpful, to
pick up the sample. A capillary brush (whose construction will be detailed later) is also
a useful tool to collect large numbers of particles. The application of the capillary brush
is limited in particulate collection since separation of the particles from the brush fibers
might be problematic. An alternative to the capillary brush is the vacuum tip, a device
constructed to provide a vacuum to pick up small particles and a filter medium to
capture the particle for analysis. This apparatus can be constructed of a capillary and
filter holder attached to an appropriate vacuum source. The use of adhesive tapes are
quite useful in collecting and transporting particulates, but removing the sample from
the adhesive can be cumbersome. An alternative is to dissolve the adhesive from the
backing using filtered toluene and evaporating it onto the KBr window prior to analysis.
The particle is surrounded in a matrix that can hold it securely and can be removed
digitally from the collected spectrum by spectral subtraction.

Particles are found not only on the surface, but can also be imbedded in objects
as inclusions. Included particles are complex sampling problems. If the material in
which they are contained is soft and pliable it is possible to excise them from the
material using blades, probes, dental picks and tweezers. The best approach is to
observe the particle under a prep microscope. A large diameter tungsten probe would be
beneficial since it could be used to penetrate the substrate and pry the sample to the
surface where it can be picked up with tweezers or a blade. The adherence of the
surrounding material is of some concern, but it is of benefit and can be used in the
analysis of the particle as a reference in spectral subtraction (the application of spectral
subtraction will be covered elsewhere). This sampling technique is of course destructive
in nature but can probably be limited to small areas. Substrates of an intractable nature
are more problematic since the substrate can prevent penetration because of their
hardness and strength. If probes and blades are not successful it might be necessary to
cut the substrate and the particle using a diamond or jeweler's saw. The cut will have to
be made first to remove a larger piece from the substrate to include the particle and then
through the particle to expose it to the surface. A microtome can also be useful here to
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take a small, thin slice of the sample. The microtome is an expensive item, so unless
this type of sampling is a routine occurrence the effort expended in sawing is more cost-
effective.

Particles suspended in liquids can be handled very easily by using filtration
media of the proper construction and observe cleanliness in sample handling. A typical
apparatus that would be used to separate suspended particles would include a gas tight
syringe of 5 ml or less supplied with a Luer-Lok connector. A syringe filter holder and
filter medium constructed of materials compatible with the suspension solvent should be
used. Filter media such as Nuclepore filters and equipment (Costar Corp. Cambridge,
MA.) is a good selection since the filter media has uniform pore size and is constructed
of nonfiberous, solvent resistant materials. It is important to use a filter medium free of
fibers to avoid confusion of sample with medium. To aid in locating transparent
samples more easily, the filter media can be sputter-coated with gold/palladium from a
Sputter coating apparatus used in Scanning Electron Microscopy if available. An
aliquot of the suspension is passed through the filter and then flushed with an aliquot of
the same solvent as the suspension to rinse the filter of any dissolved material that might
crystallize after the solvent has evaporated. The flushing solvent should have been
passed through a filter medium of at least the same pore size as that used for the
sampling to avoid contamination of the sample with foreign particles. Once rinsed the
filter media containing the particles of interest can be examined under a prep microscope
and the particles can be removed from the filter by any appropriate method previously
mentioned.

1.3.1.2. Fibers

The problems that arise in fiber collection are far fewer than those experienced in
particulate sampling. Fibers are an easier material to handle since they are flexible and
usually have one large dimension. They can exhibit charging as do particles, that can be
neutralized with static discharge guns. Tweezers are the most appropriate tool to use in
fiber collection, but things as diverse as adhesive tape or vacuum filters can also be
used. An easy vacuum method utilizes the filter support and media used to filter
solutions and a vacuum source. These techniques are appropriate for isolated fibers or
those that are loose and non-woven. For woven fabric or bundled fibers the sampling
methods become more complex. In fabric the sampling of individual fibers can be
performed by using a tungsten probe to lift the fiber from the weave, tweezers to pull out
an appropriate length and a pair of sharp, small scissors to cut the selected fiber. With
this method any number of individual fibers can be removed from the fabric for
analysis. Fiber bundles can be treated in the same manner as fabric except for a need to
immobilize the bundle. Immobilizing the bundles can be done with adhesive tape as a
support or by holding the bundle between two glass slides so that their ends extend past
the edge of the slide. It should be noted that some glass slides are lubricated with
formate salts and should be removed by scraping one slide edge over the surface of
another. This will eliminate the possibility of sample contamination. The individual
fibers can then be selected using tweezers. If the fiber is coated or multilayered and a
cross-section is desired so that each layer can be observed, the fiber can be mounted into
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epoxy contained in the end of a Pasteur pipet. The mounted sample can then be sliced
or microtomed before analysis.

Fibers are usually extruded and for that reason have a uniform cylindrical shape.
This shape acts as a lens when exposed to the spectrometer and distorts the beam
causing aberrations in the baseline and changes in relative absorptivities of some peaks.
To avoid this problem it is best to flatten the fiber in the area of interest. This can be
performed using either a rigid spatula or a Roller Blade (Spectra Tech, Stamford CT).
The Roller Blade can be used with the smallest fibers to roll a portion of the sample flat.
This flattened area is then ideal for analysis.

1.3.1.3. Films and Laminates

The sampling of films and laminates can be divided into two classes that are
dependent on the choice of analytical method. For thin films, transmission
measurements would be the most appropriate if the film is transparent and thin enough
to allow light to pass through. In this case the film should be treated as particulate
material. If the film is too thick for transmission or opaque or a laminate, a thin cut can
be taken from the edge of the sample using the following procedure. The film is placed
between two glass slides (which have been cleaned as mentioned earlier) in such a way
as to leave a portion of the film overlapping the edge. The exposed film edge is then cut
flush with the glass slides. The sample is then repositioned so that a thin section overlaps
the edge of the slide and a very thin cut is made from the edge of the sample. The use of
a prep microscope is of benefit here. The thin section that was formed in the second cut
should be almost translucent and can be handled as a particle. If the sample is a
laminate each of the layers can be analyzed individually. The laminates can also be
sampled by cutting obliquely through the sample thickness to expose wide surfaces of
each laminate. As an alternative to sectioning, thick films of an adequate size can be
sampled using organic-free abrasive paper such as is supplied with the Si-Carb Sampling
Kit (Spectra Tech, Stamford, CT). The abrasive paper is used to remove a portion of the
surface of the film and then analyzed by reflectance techniques directly on the pad. This
sampling is limited to surfaces and would be ineffective in laminated structures.

1.3.1.4. Micro-pyrolysis

Solid samples are at times intractable even to crushing. This requires harsh
treatment of the sample in order to transform it into a more easily manipulated
configuration. This can be done using micro-pyrolysis. Micro-pyrolysis is a technique
that is used to convert insoluble, hard samples to a soluble liquid or solid. The method
involves placing the sample particle or film into a capillary about 3 mm from the end.
The sample end of the capillary is heat-sealed and the particle is then heated with a
microburner until pyrolysate droplets are formed. The sealed end of the tube containing
the ash, if any, is broken off and solvent is allowed to flush the sample onto an
appropriate surface for analysis. As was previously noted cleanliness of the solvent is
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critical to the analysis to avoid contamination.
1.3.1.5. Liquid Micro-Sampling

Liquids are probably the easiest samples to collect since they are not usually
subject to static charges and infrequently do they adhere to the substrate. However, the
small quantities that usually occur when collected for micro-analysis are easily lost in
the collecting tools normally used for liquid collection, such as pipets or syringes.
Certainly microsyringes are appropriate for this task since they hold very small volumes.
When samples are not confined to small volumes, but spread out over a large area or in
small droplets, it is difficult to collect samples. A solution to this is the use of the
capillary brush. The capillary brush is a glass capillary fitted with glass fibers welded to
the end. The process of making these brushes is tedious but worthwhile. Small groups
of silica fibers such as those used in gas chromatography are placed in the end of the
capillary, A microtorch is then used to melt the capillary slightly, enough to hold the
fibers but not so much as to close the capillary. The fibers are allowed to extend out of
the capillary and are trimmed to form an even tip. This brush can be used to collect
samples from enclosed areas or broad surfaces by immersing the fibers into the liquid
and allowing it to "capillary" into the fibers and capillary tube. Once the sample is
isolated in the capillary it can be transported to the analytical station and removed from
the capillary by flushing the capillary with a solvent by "capillary action" onto an
appropriate surface for analysis.

1.3.2. Micro-Spectroscopy Using Fourier Transform Infrared and Raman
Spectroscopies

Molecular vibrational spectroscopy is an important means of identifying the
structure of chemical compounds. Each bond in a molecule has a specific response to
incident light energy and will affect the energy contained in the incident light in a
specific way. All wavelengths of the incident energy are not absorbed, but rather only
those energies that interact with bonds in the sample will be affected. This absorption
occurs at specific frequencies and is related to the bonds in the structure with which it
has interacted. The interactions are not random but abide by specific rules described by
quantum mechanics and are, therefore, reproducible and predictable. When these ab-
sorptions are detected and plotted as a function of incident energy frequency it repre-
sents an absorption spectrum. Each peak of this absorption plot can be assigned a spe-
cific structure with which the incident light has interacted. These interactions cause the
atoms and bonds to distort by stretching or bending.

1.3.2.1. Infrared Micro-spectroscopy
The application of microscopic sampling to infrared spectroscopy has had a long
history dating back to the 1940s when Burch2 applied a microscopic accessory equipped

with Cassagranian lenses to collect microspectra using a dispersive infrared instrument.
The first applicationZ of microspectroscopy to Fourier transform instruments was in

40

la

-

A



1983 when BioRad Instruments introduced the FT-IR microscope.

Figure 1.18 is a schematic of the beam path of a typical infrared microscope. It
is similar to a sophisticated light microscope in that it contains both a substage
condenser and an objective lens. These lenses are, however, reflective rather than
transmissive lenses to accommodate the infrared beam. Standard glass lenses would be
opaque through most of the mid-infrared region and therefore are not used. Another
difference between the light microscope and the infrared microscope is that the latter
includes a movable beamsplitter that allows viewing the sample during positioning and
focusing, and variable apertures, in some cases, both before and after the sample. The
apertures are used to mask both the incident beam and the transmitted beam. This
"redundant aperturing" is used to assure that an undistorted baseline is collected by
removing stray light (light which has passed around the sample). -The aperture after the
sample in the transmitted beam can be used to spectrally isolate the unwanted portions
of complex sample from contributing to the collected spectrum. The spectral isolation
permits analysis of small inclusions in larger matrices that would contribute to the
sample's spectrum. The aperture before the sample limits the light scattered by the
substage condenser from reaching the detector. The microscope accessory can be used
to collect spectra in both the transmission (through the sample) and reflection (from the
surface) mode. Reflectance is more troublesome in the interpretation of the resulting
spectrum since they are usually distorted by refractive index effects. These refractive
index effects are manifested in the reflectance spectra by "derivative-shaped” peaks.
The position of the peak is also shifted by several wavenumbers from typical positions
found in transmission spectra.
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Figure 1.18. Schematic of the Beampath of an Infrared Microscope
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The operation of the infrared microscope is straight-forward and is very similar
to a light microscope. Unlike light microscopy, however, the infrared radiation
wavelength imparts problems to the collection of spectra from samples whose particle
size is less than about 50 *m. Particles in this range will be of the same size or smaller
than the infrared wavelength. Shape and thickness of the sample are critical since
irregularly shaped samples are capable of greater diffraction of the incident beam. The
diffracted beam then forms nodes that divide the incident energy and reduce the total
throughput of the sample. The use of apertures again play a significant role here but this
time to the detriment of total signal since they effectively eliminate some of the
diffracted nodes. Some improvement in the spectrum is gained because the apertures
eliminate the diffracted nodes from other areas of the sample, which is the spectral
isolation function mentioned earlier.

Most samples to be analyzed by infrared microspectroscopy are introduced into
the accessory by placing the sample on an infrared-transparent material such as a KBr or
NaCl window. The first step of the collection process is focusing the microscope on the
sample. Focusing is important since it minimizes spectral distortions caused by irregular
samples. It is good practice to focus deep into the sample if the sample has a rough
surface. That is to say, rather than use the top surface of the sample use a focal plane
that appears to be inside the sample. Flat samples are easily analyzed since they have a
uniform surface and focusing on the top surface is adequate for data collection.

The second step in the collection process is to select the area of interest in the
sample by using the apertures to outline this area. This aperturing performs two practi-
cal functions. The first is to define the portion of the sample to be analyzed and the
second is to block radiation not passing through the sample or the area of interest. The
radiation not passing through the sample will cause a shift or distortion of the baseline
leading to spectral irregularities such as incorrect peak ratios within the sample and
sloping baseline. The sloping baseline manifests itself in the display of the spectrum
and in spectral subtraction (to be covered later).

Once the sample is in place the third step is data collection. The FT-IR
instrument is a single-beam spectrometer and it is necessary to collect a background
spectrum to which the sample spectrum is ratioed. The sample in the microscope has
been masked by an aperture and it is necessary to collect the background using the same
aperture size as the sample. Since it is impossible to know the sample aperture size
before-hand it is common to collect the background spectrum after the sample spectrum
but before ratioing the sample to a background. The background spectrum is collected
by moving the image field from the sample to an area of the supporting window that has
no sample present.

The collection of a good spectrum using microspectroscopy is best served by
analyzing flat samples, but, in practice few samples are flat. Particles that are too thick
to produce a spectrum of less than 2 AUFS (absorbance units full scale) should be
crushed to reduce the thickness. Spectral absorbance above 2 AUFS will distort the
relative ratios of the absorbing peaks, especially the peaks of greatest intensity.
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Crushing can be done by placing the particle between two clean glass microscope slides
and squeezing it until the sample is translucent. The crushed sample can then be trans-
ferred to a KBr window for analysis. Two KBr windows can also be used to crush softer
samples. When crushing between KBr windows, additional KBr powder should placed
between the windows to provide a location for collecting a background. If no KBr were
present an interference fringe would be formed by the gap between the two windows
when the background was collected. The interference in the background would
unnecessarily distort the sample spectrum during ratioing. In the case of elastomeric
materials the difficulty in collecting a spectrum is not in flattening a thick sample, but
maintaining the thickness after crushing. Because of their resilience the elastomers tend
to return to their original shape. The solution to this problem is to compress the sample
between two KBr windows and while holding them securely place fast-curing glue
(Crazy Glue, for example) on the edge of the windows to hold them in place. Allow the
glue to cure and then collect the spectrum. Samples that are difficult to secure on the
slide can be immobilized on the KBr window by embedding them in rubber cement
diluted 1:1 with cyclohexane. The spectrum can then be collected and the embedding
media contribution to the spectrum can be removed by spectral subtraction.

Single fibers are a difficult sample for classical transmission spectroscopy be-
cause of their dimensions. In conventional spectroscopy the single fiber was difficult to
mount reproducibly into the infrared beam and to observe without spectral distortion.
Microspectroscopy has opened the field to capabilities that were non-existent in the past.
The infrared microspectroscopic accessory enables the analyst to collect high quality
spectrum from single fibers as small as 5 em in diameter. The fiber sample can be
synthetic or natural of any dimension. The only restriction on the sample is that it
should be capable of compression to form a flat area for analysis. This flat area can be
formed using a hard probe to roll the fiber or a diamond anvil cell to crush the area of
interest. In either case the fiber is flattened so that the it does not act as a cylindrical
lens in the infrared beam. It should be noted here that modifying the fiber in such a

.

manner will possibly alter any orientation information that can be obtained from the
spectrum.

Samples that are in the form of fine powders can pose a problem in conventional
spectroscopy since the formation of a pellet will so dilute the sample that a complete
spectrum is impossible to collect. The preparation of the sample as a salt dispersion or
micropellet can be of benefit only when the sample can be observed. A salt dispersion
can be made on a glass slide by mixing the sample with salt and then crushing the par-
ticles to reduce their size. The micropellet provides an easier means of handling the
sample and can be made using a microgrinder (such as a Wiggle-Bug) and dies that
produce 3 mm pellets when compressed. The microscope provides the method of con-
densing and focusing the beam to collect the spectrum.

The infrared microscope is not only useful for solid materials, but is also useful
for limited amounts of liquids. The deposition of the liquid sample onto a window by an
appropriate technique such as a microbrush or microsyringe can form a spot that is
dependent on sample size but can be focused on be the accessory. With careful concen-
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tration on the window a small spot can be formed whose spectrum can then be collected
as with any other transparent sample. Microspectroscopy is applicable as a tandem
technique for gas chromatography since the spectrum of the liquid can be collected and
then have the sample transferred to the GC for further investigation. It can also be ap-
plied to HPLC eluents where evaporation of the mobile phase and resultant analysis can
yield spectral information about the solute.

1.3.2.2. Raman Microspectroscopy

The first application of microspectroscopy was reported in 1979.4 The advent of
laser applied to Raman spectroscopy has enabled standard metallurgical microscopes to
be coupled with the Raman spectrometer for the collection of spectra from small
samples. Optical glass does not have a Raman interaction and is therefore readily
adapted to Raman spectroscopy with little modification to the microscope optics. The
Raman microscope has the same limitations as does Raman spectroscopy in that only
samples with little color and low fluorescence can be analyzed. The spatial resolution of
the microscope is excellent with sample sizes only limited by the focal size of the
incident laser onto the sample. In practical terms this resolution is 5-10 em.

The operation of the Raman microscope is relatively straightforward for sample
analysis. The sample is placed onto the sample stage with the microscope in the re-
flectance mode, the area of interest is located, and focus is obtained for the sample and
the laser spot on the sample. For samples that are thermally stable the spectrum can be
collected using high laser energy input. The greater the incident energy the greater the
emitted signal. Thermally labile samples are significantly more complex in the analyti-
cal approach used. Because the high incident created in the microscope field by the
laser generates significant amounts of heat, thermally sensitive samples must be handled
with more conservative methods.

The thermal deterioration is significant since repeated occurrences lead to the
deterioration of the microscope objective through deposition of the evolved materials
onto the objective. The first and most obvious means of reducing thermal destruction is
to reduce the incident energy. This approach will reduce the thermal load on the sample
but with proportional reductions in Raman effect emitted light. The compromise here is
to increase the data collection time with either increased sampling rate or increased
number of coadded scans. Both of these options increase data collection times but
provide less aggressive environments. An alternative to incident energy reduction is to
provide a means for heat to dissipate from the sample during analysis. The easiest and
most straight forward methods are to embed the sample in water glass, a concentrated
solution of sodium silicate that is transparent to the Raman effect and forms a hard,
transparent mount for the sample. The water glass also protects the sample and objec-
tives from thermal decomposition by providing a mode for the excess heat energy to be
dissipated. Samples can also be diluted in a pellet made of materials that have no
Raman effect such as alkali halides to minimize heating. Defocusing the incident beam
is also an effective technique for mediation of localized heating but signal reduction may
result in poor quality spectra.
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Liquid samples of limited volumes can also be analyzed by Raman
microspectroscopy. The application does not require complex sampling method but
merely placing the sample in a glass capillary. Care should be taken in focusing the
laser beam on the sample. It is necessary to first focus the visual image of the capillary
surface and then while observing the laser image raise the stage to move the beam into
the capillary. A distinct change in the laser image will occur when the beam has passed
into the capillary contents. Data collection is identical to any other sample.

Fiber samples can also be evaluated as with infrared microspectroscopy except
that the fiber need not be crushed to reduce thickness but can be collected without
modification. Samples can be immobilized on a glass slide using adbesive tape. In
addition, surface particles on the fibers can be evaluated using appropriate pinhole
masks to spatially separate the area from the matrix. Characteristics of the area of
interest can also be accentuated in the final spectrum by spectral subtraction.

1.3.3. Scanning Electron Microscopy

Scanning electron microscopy (SEM) is used to produce high resolution and
depth of field images of sample and to provide chemical analysis of micron sized areas
on or near the surface. Products obtained from interactions between bombarding
electrons and the atomic species in the specimen are ejected from an excitation volume
in the sample and monitored during a typical SEM scan. Any partially conducting
material or non-conducting materials coated with a thin layer of gold or gold alloy,
which has a low vapor pressure can be analyzed with the SEM.

In SEM analysis, the specimen is bombarded with high energy electrons (5 to 30
kilovolts) which produces several different types of signals to provide information about
the specimen. Both elastic and inelastic collisions result from the interactions of the
electrons with the atoms in the sample. The elastic collisions between the bombarding
electrons and the atomic nuclei of the specimen produce backscattered electrons (BSE),
as shown in Figure 1.19, which provides both topographical and compositional
information about the sample. Imaging with the BSE signals provides a means of
distinguishing zones of different atomic number within a specimen due to the greater
probability of elastic collisions with higher atomic number. The penetration depth of the
bombarding electrons depends upon the accelerating voltage and the atomic number of
the sample. Typically the BSE images provide useful information down to about 0.5
microns.

Inelastic collisions between the bombarding electrons and the atomic electrons of
the specimen produce secondary electron imaging signals, x-rays and Auger electrons
from interactions with inner shell electrons and light in the form of cathodo-
luminescence from lower energy processes. The secondary electrons are collected to
produce the micrograph images which are normally associated with SEM. The depth of
penetration for these signals are usually 2 to 10 nm for metals and 5 to 50 nm for poor
conductors. The x-ray information typically arises from a volume around 1 micron in
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depth, while cathodo-luminescence is observed almost totally from the surface. Auger
electrons arise from interactions in the first 0.5 to 2 nanometer layer of the specimen.

The great depth of field of the SEM ( up to 500 times that of an optical microscope)
allows it to produce completely in-focus images of rough surfaces at high magnification.
However, SEM is generally inferior to the optical microscope for routine examination of
samples prepared using standard metallographic techniques at low magnification (300 X
- 400X). Some of the current SEM instruments allow for samples as large as 15 to 20
cm to be analyzed. An excellent reference for using SEM in a variety of analytical
applications is given in the monograph by Gabriel.
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Figure 1.19 Schematic showing the principal mechanisms occurring in SEM.

1.3.4. Optical Microscopy

Conventional optical microscopy is a relative inexpensive analytical tool for the
examination of particulates and microstructures. Typically resolutions of 500
nanometers are possible, which allows for observation of surface faceting and
dislocations. Catalogs of particulates, fibers, and morphological species of many
materials are available for use to identify a particular material. Many applications using
polarized light and the new confocal microscopes enables optical microscopy to
continue to provide analytical information which is not available from the other
methods.

A major disadvantage of current uses of optical microscopy is that experienced
microscopists can identify many species; however, computerized databases with
efficient pattern recognition capabilities are not readily available for the industrial
laboratory. Such data can be included in chemical fingerprinting databases and will
make the technique even more useful.
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1.3.5. Transmission Electron Microscopy

Transmission electron microscopy is extremely useful for characterizing
materials with high resolution imaging from small (submicron) regions of the sample.
The information obtained form TEM analysis includes microstructural analysis of
metallic, ceramic and polymeric materials as well as chemical and crystallographic
information. Certain crystallographic details such as crystal orientation and matrix-
precipitate orientation relationships are also possible. The advent of scanning
transmission electron microscopes (STEM) has expanded the role of this analytical tool
from primarily new chemical structures and failure analysis to activities such as
fingerprinting.

TEM and STEM normally use an electron beam (varying from 60 to 300
kilovolts for TEM and 2- 50 kilovolts for STEM) to pass through a thin specimen and
the resulting intensity distibution is imaged by a photographic imaging system or
electron energy loss spectrometer. The interactions between the electron beam and the
sample provides several types of information. Chemical and density effects result in
intensity variations much like an optical microscope, except that the resolutotion of the
electron microscope is much is near the wavelength of the electron beam. In addition
diffraction effects from the crystal lattices present in the specimen can also be used to
identify or characterize the material.

The capability to attach an energy dispersive Xx-ray spectrometer on the side of
the instrument column allows collection of x-rays generated by interactions between the
focused electron beam and the specimen; enabling characterization or identification of
the chemical or elemental composition of submicron volumes possible. The limitations
of current energy dispersive spectrometer systems is for the atomic number must be 6 or

higher.

1.3.6. X-ray Diffraction

X-ray diffraction is extremely useful for identying and characterizing a large
variety of materials. In general, x-ray analysis is restricted to crytalline materials,
although some information may be obtained from amorphous and powdered samples.
Most x-ray diffraction techniques are rapid and nondestructive and are capable of
identifying the phases, grain size, texture, and crystal imperfection. Samples are
acceptable in many different forms, depending upon the availability of the material and
the type of analysis to be performed.

The X-ray diffraction technique is based upon diffraction effects of x-rays
traveling through a sample. This phenomen is characterized by the Bragg equation:

o D
Sln—d
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where A is the wavelength of the x-rays and d is the characteristic interatomic distance
of the material. A number of spots or fringes are observed at various angles represented
by the sin 0. These spots or fringes result from constructive interference of the diffracted
beams and are specific for the crystal lattices of each material. Hence the ability to
identfy or characterize a material is quite good.

Current x-ray diffraction instrumentation can be portable. Also, there is a
substantial amount of software available today supporting the interpretation of x-ray
diffraction data as well as databases associated with compilations from different
laboratories.

1.3.7. Low Energy Electron Diffraction

Low energy electron diffraction is a technique for characterizing surfaces and
overlayers absorbed on surfaces. It can be considered the surface analog of x-ray
diffraction. Low energy electrons (30 - 200 electron volts) have limited penetration into
materials and consequently provides high sensitivity for periodic atomic structure at the
surface. The periodic atomic structures at the surface diffracts a monoenergetic electron
beam like a diffraction grating. The diffraction pattern and its intensity distribution can
provide information about the atomic positions and the crystallographic features of the
surface.

The diffraction pattern obtained during a LEED analysis consists of a small
number of spots displayed as a CRT image as whose symmetry of arrangement is that of
the surface grid of atoms. Any surface contamination on the surface of the material will
significantly affect the diffraction pattern observed and provides a useful capability for
discriminating against undesired surface features. Catalogued LEED patterns are
available for many single-crystalline materials.
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The diffraction pattern obtained during a LEED analysis consists of a small number of
spots displayed as a CRT image as whose symmetry of arrangement is that of the surface grid
of atoms. Any surface contamination on the surface of the material will significantly affect the
diffraction pattern observed and provides a useful capability for discriminating against
undesired surface features. Catalogued LEED patterns are available for many single-crystalline
materials.

1.4. Surface Science
Surface Science has evolved over the past 25 years to become widely accepted for the
evaluation and characterization of solid vacuum compatible materials used in the aerospace

industry. Although there are many techniques available, the most practical are:

ESCA or XPS - Electron Spectroscopy for Chemical Analysis
or X-ray Photoelectron Spectroscopy

AES - Auger Electron Spectroscopy
SAM - Scanning Auger Microscopy
SIMS - Secondary Ion Mass Spectroscopy
ISS - Ion Scattering Spectroscopy

Each of these techniques exhibits certain advantages when used alone, but when two or more
techniques are combined they exhibit a synergism that constitutes a better understanding of the
process or material being studied.

Except for OM or CM, the primary excitation sources used by these techniques include
photons, electrons or ions. The primary particles interact with the surface and emit secondary
particles (i.e., photoelectrons, Auger electrons, secondary ions or scattered ions). The emitted
secondary particles are analyzed using either an energy or mass analyzer.

The information gained from surface analysis includes the elemental and chemical
composition of typically the top 20 - 5.0 nanometers (top few atom layers) of the sample
surface. The surface sensitivity of surface analysis is due to the inelastic mean free path of low
energy electrons in solids. The energy of the emitted electrons is typically between 30 and 2000
eV. Such low energy particles allow only those originating from the very near surface of the
material to escape and be detected. Particles originating deeper within the solid will interact
with neighboring atoms loose their energy and be absorbed by the solid or contribute to the
background signal. Generally, the elemental sensitivity of surface analysis is of the order of
0.5 % of an atom layer which further makes surface science very sensitive to surface
contamination.

Surface science can be used on a wide variety of failure and special materials
investigations or characterizations. Some of the materials investigations where surface science
has proven most valuable include:

. Chemical Staining of Processed 2219 T87 Aluminum
- Epoxy Primer Pinhole Investigations
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- Waste Minimization

- Aluminum/Lithium Weld Development

- Weld Defect Investigation

- Epoxy Primer to Metal Adhesive Debonds

The following is a brief discussion of each of the surface science techniques mentioned
above, their advantages, disadvantages, types of samples analyzed, method for technique
selection and examples.

1.4.1 Electron Spectroscopy for Chemical Analysis and X-ray Photoelectron Spectroscopy

ESCA is a technique which uses an X-ray source of known energy for the primary -
source of sample excitation (Figure 1.20). .
ho @ Photoelectron
E, -
E, —O
E.I -
Figure 1.20. Diagram of the ESCA Process.
Typically, a dual magnesium (1253.6 eV) and aluminum (1486.6 eV) source is used. -—

However, it has been found that the use of a high energy zirconium (2042.4 eV) anode coupled
with the magnesium offers the greatest utility when analyzing aluminum materials used on the
ET program. The sample, once mounted and introduced into the ultra-high vacuum chamber, is
placed at the focal point of the electron energy analyzer. The sample is than irradiated with 250
or 300 watts each of either Mg, Zr or Mg/Zr simultaneously. These photons interact with the
elements on the sample surface and eject core level photoelectrons which escape the sample
surface and are passed through the electron energy analyzer and detected. Each element has its
own set of characteristic photoelectrons of known kinetic energy. The Kinetic energy of the
ejected photoelectron is governed by the equation:

EKE. =hv-ERg -0 -
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where Ex g = Kinetic Energy of the Ejected Photoelectron
hv = Incident X-ray Photon Energy
Ep E. = Binding Energy of the Ejected Photoelectron
@ = Work Function of the Electron Energy Analyzer

By knowing the analyzer work function, incident photon energy and measuring the
kinetic energy of the ejected photoelectron one is able to determine the binding energy of the
photoelectron to within typically 0.1 eV. ESCA not only provides the elemental identification
of the elements present but also offers the ability to determine the chemical state of the atoms
on a solid surface via small shifts in binding energy.

The ESCA technique is such that it can be performed easily on any solid vacuum
compatible material. Consequently, another key advantage of ESCA is its ability to analyze
both electrically conductive (i.e. metals, metal oxides, etc.) as well as insulating materials (i.e.
powders, polymers, catalysts, etc.). ESCA is not limited by the electrical properties of the
sample being analyzed.

As an example, an ESCA survey scan of a chemically processed 2219 T87 aluminum
surface was analyzed (Figure 1.21). ESCA identified the presence of carbon, oxygen, fluorine
and aluminum on its surface. The survey scan was acquired with the x-ray source powered at
250 watts each Mg/Zr and the spectrum normalized to zirconium at 2042.4 eV. Consequently,
the kinetic energy at the 0 eV binding energy is the zirconium fermi edge.
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Figure 1.21. Typical ESCA survey scan of a clean chemically processed 2219 T87 aluminum
surface normalized to Zr at 2042.4 eV.
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Another key advantage of ESCA is the ease of quantitation with the use of developed
peak area sensitivity factors. If the sample is assumed homogeneous within the analysis
volume, the intensity of the photoelectron peak is given by the equation:

I = nfcOyAAT

where I = The intensity of the photoelectron peak
n = Number of atoms of a element/cm
f = Incident x-ray flux in photons/cm2-sec
¢ = Photoionization cross-section
0 = Instrumental angular efficiency factor
y= Efficiency of the photoelectron process
A= Mean free path of a photoelectron in a solid
A = Area of sample analyzed
T = Detection efficiency

Thus, solving for the number density of atoms yields:
n = I/(fcByAAT)
Defining the denominator as the Atomic Sensitivity factor (S) reduces the equation to:
n=1I/S.
If we consider the ratio of two elements in a homogeneous matrix we have the expression:
ny/ng = (A1/S1//S7) -

The generalized expression for determining the atomic fraction of any element in a sample is
than represented by the equation:

Cyx = (/S ;) = (Ix/Sy)/S (/S -

This expression, although far from absolute, offers the ability to perform semiquantitative
ESCA analysis to within 10 - 20 % on homogeneous samples. When more accurate quantitative
analysis is desired, standards of known concentrations which accurately represent the samples
of interest must be analyzed. In this way, escape depths, chemical effects, matrix effects, etc.
are similar and thus cancel each other.

Quite often the main disadvantage of ESCA is its large analysis area. Conventional
ESCA instruments have a verg large analysis area. For example, some instruments have a fixed
analysis area of about 12 mm#. Although most samples are sufficiently large and unaffected by
this constraint, some samples are far too small for accurate ESCA measurements. One such
example is pinholes i m epoxy primer. The majority of these anomalies are typically about 1 mm
in diameter (< 1 mm2) which is 1/12 the analysis area of the instrument. Newer instruments
have been developed which render such analyses routine. These small area ESCA instruments,
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have variable analysis areas and are able to analyze surface features as small as 75 m. The
minimum effective analysis area of a small area ESCA unit is 0.004 mm?2 which is far below
that required for the analysis of pinholes. Small area ESCA was performed on the pinhole
anomaly and found to be extremely effective.

1.4.2 Auger Electron Spectroscopy & Scanning Auger Microscopy

Auger Electron Spectroscopy differs from ESCA in that AES uses an electron beam for
sample excitation and occurs as a result of a relaxation process (Figure 1.22).

Electron Scattered Auger
& @ Electron @ Electron

. f

E,

Figure 1.22. Diagram of the Auger Process. Note that AES is a Three Electron Process.

Whereas ESCA uses an X-ray source to eject photoelectrons for analysis, AES uses a finely
focused electron beam to eject core level electrons thus placing the surface atoms in an excited
state. The excited surface atoms relax to the ground state via radiation or the Auger process.
The energy of the primary electron is typically between 3 and 10 kV. Most AES analyses are
performed using 5 kV. The Auger process involves three electrons. The first electron Eyp is
ejected by the primary electron (Ep). A second electron (Ep) from a higher energy level fills
the core hole created by the ejection of E1. The excess energy between E] and Ej is translated
to a third electron (E3). The third electron is the Auger electron. The Auger process places the
atom in a doubly ionized state. The Auger process is independent of excitation source and each
element beginning with lithium has its own set of characteristic Auger transitions. AES is also
sensitive to 0.5 % of an atom layer or 0.1 atomic %. The Auger electrons are also passed
through an electron energy analyzer and detected. The result is an elemental identification of
the elements present on the sample surface.

As an example, a typical AES survey scan of the same aluminum surface discussed
above identified the presence of carbon, oxygen, sulfur, chlorine, nitrogen, fluorine, copper and
aluminum (Figure 1.23). The AES spectrum was acquired using a 5 kV and 1 mA electron
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beam. The spectra is displayed as the derivative of the signal (d(N/E)/dE) as a function of
energy.
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Figure 1.23. Typical AES survey scan of a clean chemically processed 2219 T87 aluminum
surface acquired using a 5 kV, 1mA electron beam.

Quantitation of AES spectra is another advantage of performing AES analysis. The
method employed is somewhat similar to that of ESCA, however, the derivative spectra or the
peak-to-peak is used as a measure of intensity. This method for quantitation is less accurate than
the peak area measurement used by ESCA.

One of the key advantages of AES over ESCA is its small analysis area. AES has a high
spatial resolution due to the use of a finely focused electron beam for excitation. Older
instrument models have a minimum AES analysis area of 8 X 10-7 mm2 (~ 1 mm diameter),
the newer commercially available instruments have analysis areas of the order of 5 X 10-10
mm?2. Regardless of the instrument, AES is orders of magnitude better suited than ESCA to the
elemental identification of small surface features.

Still another advantage of AES is its ability to scan the electron beam over an area of the
sample and obtain maps showing the elemental distribution of differing elements. This is the
SAM feature of the surface analysis instrument. Instruments can operate effectively at
magnifications of 1000X. As an example, SAM was found very useful in the investigation of a

54



weld defect. Here samples were machined from scrapped flight hardware where defects were
known from x-ray inspection to exist. The samples were then mounted, introduced into the
ultrahigh vacuum analysis chamber (5 X 10-10 torr) and fractured in-situ. In-situ fracture
exposed the weld defects under UHV which were than analyzed by both AES point analysis and
SAM. This approach allowed the identification of the contamination causing this anomalous
condition.

Another example of the SAM capability was the analysis of a contaminated aluminum
surface. AES point analysis found the composition of the surface to vary from point to point.
Additionally, a 250X SEM image contained bright spots randomly dispersed on its surface. The
elements present were aluminum, oxygen and carbon. Thus, 250X SAM elemental maps were
acquired for these elements (Figure 1.24).

L . b i : .
h1!|'1ul(ﬁﬁﬁgl‘al@\‘ﬂﬂ

P ST L e

Figure 1.24. 250X SEM (bottom-left) and SAM elemental maps for
aluminum (top-left), oxygen (top-right) and carbon (bottom-right).
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The SAM maps revealed aluminum and oxygen surface voids which were found to be
rich in carbon. The carbon was found to be dispersed islands on the surface of the sample.
These analyses were performed at a magnification of 250X.

Although AES is a very powerful analytical tool, it does have disadvantages. A major
disadvantage of AES is the types of samples which can be analyzed. Unlike ESCA, AES is not
capable of analyzing electrically insulating materials. Due to the use of an electron gun for
excitation, samples must be electrically conductive and have a conductive path to ground.
Thus, AES and SAM analysis is limited to semiconductive and conductive materials.
Furthermore, AES does not offer the same level of chemical state information gained by ESCA.
However, AES is typically a quicker technique to perform. AES was not employed in the
epoxy primer pinhole investigation due to the fact both the contamination and primer materials
are non-conductive.

1.4.3 Secondary Ion Mass Spectroscopy

SIMS is the most sensitive of the surface science techniques to surface contamination.
SIMS is typically several orders of magnitude more sensitive than either AES or ESCA. The
lower detection limit for many elements by SIMS is of the order of 1 ppm. Furthermore, SIMS
is the only surface science technique capable of detecting hydrogen and is sensitive to the entire
periodic table of elements.

Secondary Ion Mass Spectroscopy is performed using an Argon inert gas ion gun for
excitation and a quadrupole mass analyzer (QMA) for detection. The SIMS process involves
the Argon being ionized and accelerated onto the sample surface with typically 0.5 to 4 kV.
The incident Argon ions interact with the surface species of the sample through exchange of
energy and momentum. The surface species are ejected from typically the top two atom layers
of the sample (~ 5 A) as positive ions, negative ions and molecular fragments (Figure 1.25).

Figure 1.25 Illustration of the SIMS Process.

The emitted secondary ions and ionic fragments are then focused into an energy filter,
passed through a mass analyzer and detected. The SIMS spectra are displayed as the intensity
(log or linear scale) vs atomic mass unit (AMU). Similar to ESCA, SIMS analysis can be
performed on both electrically conductive and non-conductive materials. One major

56



disadvantage of SIMS over ESCA and AES is that it is a destructive technique. Once SIMS is
performed on a sample surface whether static or dynamic the original as received surface has
been destroyed. Consequently, SIMS is usually the only or last technique to be performed on a
sample surface.

As an example of the utility of SIMS, analysis was performed on a chemically processed
2219 T87 aluminum surface. Both positive and negative SIMS spectra were acquired (Figure
1.26).
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Figure 1.26. Positive (top) and negative (bottom) SIMS spectra ofa
chemically processed 2219 T87 aluminum surface.
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The spatial resolution of SIMS is governed by the spot size or raster area of the incident
ion gun. A minimum spot size of 800 *m translates into an analysis area of 0.5 mm2.
Typically, however, a 2 mm X 2 mm raster area is analyzed (4 mm2).

Another major disadvantage of SIMS is the difficulty in the quantitation of SIMS data.
This is due to the fact that the elemental sensitivities for SIMS cover a very wide range (i.e.
10%). SIMS is an excellent complimentary technique to both ESCA and AES. Furthermore,
good sample to sample or good to bad comparisons can be made of similar sample materials.

Compared to the AES and ESCA spectra discussed earlier, SIMS is far more sensitive to
certain surface species. SIMS identified the presence of sodium, magnesium, potassium,
calcium, silicon, titanium, vanadium, chromium, copper, iron, zirchonium, and hydroxide on a
similar surface analyzed by both ESCA and AES. .

1.4.4 Ion Scattering Spectroscopy

Ion Scattering Spectroscopy is similar to SIMS in that it uses an inert gas incident ion
beam for sample excitation. ISS uses a monoenergetic low energy (0.1 to 3 kV) helium, neon or
argon ion beam as its excitation source. A fraction of the incident ions interact with the sample
surface and are scattered from the surface atoms by binary elastic collisions (similar to the
scattering of billiard balls of different masses). The ISS process (see Figure 1.27 on the next
page) is governed by the equation:

- 2 _sin2 0y1.212
El-ﬁl‘)'[cos6+(u sin< 0)1-4]

where Ei = Energy of the Scattered Ions
Ep  =Energy of the Incident Ions
Mj  =Mass of the Incident Ions
My = Mass of the Surface Atoms
u =M/M)
6 = Scattering Angle

An ISS spectrum is a measure of the energy distribution of scattered incident ions
leaving the sample. ISS peaks occur at specific values of Ej. Furthermore, the scattered ion
signal is proportional to the number of surface atoms for a given element, probability that the
incident ions will remain ionized and differential scattering cross-section. The differential
scattering cross-section increases with atomic number such that ISS is most sensitive to higher
mass elements. The probability that an incident ion will remain ionized following scattering is
103 and decreases dramatically with subsurface atoms which gives ISS its unique ability to
analyze the very top atom layer of a material. Thus, the primary advantage of ISS is its unique
surface sensitivity.
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ENERGY ANALYZER

Figure 1.27. Illustration of the ISS Process.

As an example, ISS was performed in the characterization of staining of chemically
processed 2219 T87 aluminum. Both AES and ESCA identified the presence of copper in the
area of the stain. These techniques, however, were unable to identify the elements at the very
top of the sample surface. ISS clearly identified the presence of an elevated amount of copper in
the stained area compared to an unstained area (Figure 1.28).
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Figure 1.28. He3 ISS survey spectra of a stained (top)
and unstained (bottom) chemically processed aluminum surface.

Some of the disadvantages of ISS are similar to SIMS, Quantitation is difficult and the
surface of the sample may be changed due to minor sputtering of the surface species during
analysis. Still another common problem encountered with ISS is its limitation in mass range
and resolution with any given incident ion species. Helium is able to detect the lighter elements
beginning with lithium and offers the greatest range of sensitivity. Neon is sensitive to
elements greater than magnesium while argon is sensitive to elements greater than titanium.

1.4.5. Technique Selection Considerations for these Techniques

The above discussions explained in some detail the four surface science techniques. It is
important to keep in mind that no one technique is considered "THE" most appropriate
technique for a given sample. AES and ESCA are by far the two most popular. However, the
best approach to be used in a given analysis is to perform multiple techniques on a given
sample. Thus, when possible, both ESCA and AES should be performed followed by either ISS
and/or SIMS. To assist with the appropriate selection of techniques to be used, refer to the
attached Table 1.3 on the next page.
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1.5 . Thermal-Mechanical Techniques

A number of thermal and mechanical methods of analysis of materials can be very
useful for chemical fingerprinting purposes. Several instruments for frequently used for
determining materials' thermal and mechanical properties using temperature programmed
analysis include hight temperature differential thermal analysis, (DTA), thermogravimetric
analysis (TGA), thermomechanical analysis (TMA) and differential scanning calorimetry
(DSC). Included in this category of instrumentation is also the very useful technique described
as rheometric dynamic spectrometry (RDS). These methods have primarily been used to
characterize polymers and their precursors; however, numerous laboratories use them to
characterize metals and ceramics as well. A general discussion of these methods follows.

High temperature differential thermal analysis consists of instrumentation that measures
the temperature of a milligram sized specimen as heat is applied at a controlled rate. The upper
limit of these systems is generally around 1500 °C. The heat capacity of the material is easily
obtained, as well as latent heat effects such as phase changes or transformations and
autoignition.. The normal display of the temperature changes during. the programmed heating
provides indication of contaminants or out-of-specification material. The critical glass
temperature, which is a measure of the purity of the material, can also be a useful characteristic
for the material.

Thermogravimetric analysis is performed by placing a milligram-sized sample onto a
temperature programmed microbalance. The upper limit of most systems is around 1000 °C.
Fingerprinting can ber performed by determining whether a material's thermal weight loss is
characteristic of the normal material. This technique can also be used to evaluate wiring covers,
crystallinity, stabilizer addition and the thermal stability of many types of polymeric and
ceramic materials.

Thermal mechanical analysis is performed by placing a sample between a vitreous silica
platform and a movable silica rod and subjecting the sample to a variable load. In dilatory, the
sample is wetted with a liquid and the swelling behavior followed by the measurement of the of
the movement of the silica rod. TMA is performed at various controlled temperatures, where
characteristic properties such as thermal relaxation phenomena and tensile compliance in
polymers, fibers, and powders can be obtained.

Differential scanning calorimetry is similar to differential thermal analysis, except that
the temperature of the sample is monitored for a controlled heat input. The upper limit of most
systems is around 500 ° C when using aluminum pans to contain the samples. Fusion between
the aluminum pans normally occurs when measurements are made above that temperature.
Materials properties which ar obtained in this technique include glass transition temperature,
crystalline transition temperatures, latent heat tranformations, and specific heat measurements.

Rheometrics dynamics spectrometry determines the viscous and elastic properties of a

material by imposing a cyclical load on the material at programmed temperatues and
measureing the resultant torques and body forces. Dynamic viscosity, dynamic modulus and
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loss angle can be calculated form this data. Sample temperatures can be programmed from -150
to 400 ° C.

1.7.  Strategy for Instrument Hierarchy

Analytical instrumentation and instrumental techniques frequently used for chemical
analysis and materials characterization were described in the previous section. The theoretical
basis, application areas, sample requirements, and limitations of each technique were discussed.
The tables and flow charts in this section were developed to serve as guides in the selection and
application of instrumental techniques to solve a given analytical problem.

Before selecting specific techniques to be used, the analytical problem should be defined
by asking the following types of questions: -

What is the nature of the sample?

- Is it a solid, liquid, or gas?

- Is it organic or inorganic?

- Is it a mixture, or a pure substance?

- What is already known about its composition?

- Is it permissible to destroy the sample during testing?
- How much sample is available for analysis

- What is the material's history, and its future?

What kind of information about the sample is desired?

- Is an elemental or molecular analysis desired?

- Is complete identification of all species present required?

- Or, is it sufficient to identify the major and minor components?
- Which specific species or components are to be analyzed?

- What is the required precision and accuracy of the data?

A few of the questions will be immediately answered by visual observation of the
sample. Others can be answered readily throu gh discussions or correspondence with the person
requesting the analysis. More information may be provided by persons experienced in the
testing or processing of the material, or by the material's supplier. The remaining questions will
require a physical or chemical measurement to be performed.
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An analytical problem can be attacked in three ways:

- Consult with leading experts in the field
- Search the literature for a solution
- Experiment based on theoretical predictions

The first two points should not be overlooked. Do not risk reinventing the wheel by
failing to consult others who may have had experience with the same type of problem.
These people may be within your company, may be even in your own lab. The
companies from whom you have purchased analytical instrumentation may have
applications chemists available to help you. Some instrument manufacturers publish
newsletters and product bulletins that may provide valuable information. A literature
search may turn up the perfect solution to your problem. On the other hand, if the
problem involves a proprietary material, literature searches may be of little help. When
these sources of information have been exhausted, it is time to experiment.

One source of information about most materials that are used in industrial and
laboratory processes that may contain chemical information is the Materials Safety Data
Sheet (or MSDS). These information packages are readily available to the user to ensure
that personnel safety is always maintained and necessarily do have to identify any toxic
precursors which exist in the product.

Unfortunately, no single procedure exists for the selection of the most effective
instrumental approach to a given analytical problem. Factors to consider include the
capabilities and limitations of the available instrumentation, and the quality of the
analytical results versus the cost in time and materials required to obtain them. Table
1.4 surveys the more common instrumental techniques and summarizes each technique's
application areas, limitations and sample requirements. This table can be used to
identify the techniques that could be applied to the problem at hand. The remaining
tables and charts contain additional information that will help the analyst to "narrow the
field" and arrive at specific instrumental methods that can be applied to the problem.

63



12

FETEITIT Plos a|qnjos SIUAUIJ[D JO UOTIBOIJNIUIPL (sq3) Adossondadg
wo ¢ ~ 10 pinbi| 2q 1snw ojdureg BN € Siusw[g UOTIONP [IAI] MO stuefiout [BluawWAg Ke1-y anrszadsiy A815ug
aAIsuadX
*ANANISUDS MO7] uonBULIOJUOD s[eustew owediom pue
pios a|qnos | -wawow onoufew Juruteiuod pue uonrendijuod swredio Yioq Jo uonEesnuUIP! (4N) Adossonoads
Bwoor-1 Jo pinbif aq 1snuw ajdureg sajdures 01 £uo ajqeoyddy IB[NJ3[OW JO UOIBUTULIA(] pUe UOHEUILLIGIP [BIMONNDG | 90uBUOSHY oNduTe|y JedNN
‘aatsuadxyg ‘vnoads
20U215)21 JO SALFRIQI] PATWIT
uoneiqia Suunp 28ueyo ‘sjeudis ueurey yim -uoneredaid aydwes siueqiospe aoejms Juipnpout
3w Anpqezuejod odiapun yorym QAI}I2IUT UBD 20UISIION[] [ewnuypy “sdnosd [euonjouny ‘S[BLIJBW JO UOHBUIWIJIP
00101 | SpuOq UIBIUOD ISNW [BLIANEBIA *ANANISUIS MOT] 1ejod-uou Jo uonuesNUSP] [BITIONAS pUe UOLIEIIUIP] Kdossonosadg uewrey
‘sjuauodwod
Iofewr Aq payseus aq ued
sjusuodurod Ioutw pue d0el],
uoneiqia uump s3ueyd *AIATIISUDS WINIPIN ‘a1qe[ieAe eNoads 20UdI9)L sjueqiospe soe}ms Juipnjout
uswous ajodip of1apun yoym *patjnuapt satoads Je[nosjows JO SOLRIQI] 2AI1SUIXY ‘s[eLIajEW JO UOLIBUIULIDIIP (dLLA
8r | spuoq urejuod 1SN [BUSBN 01 ponwy uontsodwo) | s[euvieu 1sow 0 3[qesiiddy [eimonns pue uoheoyjuuap] | 1o Y[ Anpwonsedg paresju]
TiI<
*OU JIUIOIE YIIM SIUDWI[D [[E
O UONEBUIULINP aAnENEN)
SqV/dDI 1o VV s¢ aatsusdxouy *p1 < "OU JIWOE JO SIUSWI[I (4yX) Anowonosdg
3w pmbi| a[uejOAUOU 10 pI[OS pood se j10u sWI[ UOIANR( -uonesedaid sjdures [euitulfy [[® jo siskjeue aansiueng) 2oudosaIon|] Ael-Y
“sp1jos 23ues o1uwreulp a2d1e] SIUIWD[D
Surziwoge 10j 19]3nq a1rydesd aatsuadxyg ‘sjeLajew A101081)31 Jofews pue Joutus ‘a0ex) (SAV-dDD) Anowonoads
1o a[dures jo uonnjossip ‘S[R12WUoU 10} pOOO "SIUBWAI3 (9 01 dn J0 uonewuLI2(] sis[pue uolssjwg o1woly
3013w Suiumsuos-owin sannbay 10] AHANTISUDS palWI] | JO uoNBUIWLIOP SNOSUEINURS [eIUGWA[-NAW danEInuEn) |  -vwseld pardnoD A[aanonpu]
23uel osuodsal Jealn| [[BUIS
"SpYOs ‘siskeue
Surznwoie 10§ aoewmy anyded JUSLWD[-1}[NW STOIURI[NLILS satsuadxout Kjaane|al USWAINSEIU Yo 0]
10 9[duwes Jo uonn|ossip 1O s[euIdRUI OI[[BIOWL ‘SJUSWI]D ()/, PWOS 10 juswape o] 3uls e Jo siskjeue (SVV) Anowionoadg
8 013w gununsuos-owm saxmbaly -uou 1sow 01 ajqeotdde 10)] | Ananisuas ydiy ‘ajqeifal ‘iseq aoen Jofpue aaneinuend) uondiosqy dMwOly
s
ajdueg suopejjuyy sjdueg suopIeI W POyl safejueapy suopedjjddy (IR EN

SANOINHIAL SISATVNV TV.INFWNILSNI NOWWOD ¥'1 H14V.L




) ) 1 I i I ) ) ) J ) 1 } | }
$9
aAIsuadxy SN o (SIW/OT140 SIW/DD)
_ Suumsuos KANATIISUIS pUe UONIEDIJNUAP] *sormxiw xajdwoo Anawonoadg
‘3u AW I JUIWO[IAIP POYII] yim ] 10 D0 Jo Aijiqedeo Jo s1sAjue saneiuenb ssey im AydeiSoreury)
007 - 0Z SN PUR T ‘DD s sureg Mo[S uoneredas ssuiquo)) | pue uonesrnuap! ‘uoneredog pinbi Jo sen pauiquio)
‘uonmnqiustp
1y31om JeMmoosjows 1awkjod (Dd9) Aydeadorewory)
*191em Ul powopiad DJn ‘uonnqsip Jo uoneuruua(q *ozls uoneauLdd [20
*SJUIAJOS 2[qRUNS JO Iaquunu ‘aatsuadxa Kpesapopy | 1yTom mepnosjouws ssutuuas(g 1g[no2]OWs UO paseq SIIMIXIW (O3S) AydeaBorewory)
*8w 03 31l Pl ul I[qn{os 9q 1SN ‘Jurumsuos awm uoneIqie) ‘srowkjod o1 aiqeonddy xadwos jo uoneredsg uoisnoxg 9zig
*aatsuadxo
K[o1e19popy *Suumsuos ‘uonisodwosap 101Je
*Buunsuoo swin soedio awn st juswdopaaap sotuedio jo sisAjeue [Bjuswaly
Jo uontsodwosa(g "panuui| POYISA “InoIJIp St sa10ads ‘suolies Auew o] pue ‘stsA[eue aanenuenb
suoneotjdde snoanbeuop | uonenussuos y3iy jo souasaid suotue sruediour pue sruedio 1oj satoads o1uo1 Jo sarmxIw
Swgory *UOTN[OS UL 9ZIUOY ISNA ut sa1vads ooen Jo sisAjeuy |  jo 23uesapim e 0 a[qeorddy xajdwoo jo uoneredag (D1 AydesSoroworny) uoj
‘spoyiawt Jayio Aq payynuapy
"aatsuadxa AjareIopojy 3q ued s{eusiew paeredag
‘sjuauodwiod Kjnuapt *S[euseWw o[qeisunijjeunay
01 Kressaoou SN 10 Y[ 49 01 9[qeorjddy SPYOS 2[qN]Os
*s)uaAfos a[qeins Auew | sis[eue uanbasqug ‘1010919p ‘sotue 810 a[ejOAUOU pue spinbiy jo samixiw (O1dH 0 OT)
3w 0y 3 JO 2uo Ut J[qN[Os 2q ISN [ESIZATUN DALIISUIS ON o1 siqeatidde Ajapip | 1uouodwooninus jo uoneredag Kydea3orewouy) pinbi
s[euABW
J1qeIs A[euuroy; a[qeisun £jjeunay pue o1J109ds 01 [e1ouad | s[eLINBW I[IIB[OA JO SOMIXIW
3wor 8l | pue opnejoa oq 1snw [eusiely | o[nEjOAUOU O 9jqeotdde 10N woiy saduel ANaudo[aeg | usuodwooninut Jo uoneredsg (D0) AydesGorewon) sen
*3[qE[IRAR SILIRIGI] 30UIIDJDI *S[ena1ewW SIUBIIOUI JUIOS
aalsuadxg SUIJ-UO DAISUIXF 'S[ELIIBW pum 21uedIo Jo UoHBOINUIP!
2100 *poZnejoA 9q Isnu a[dureg molg 1sous 01 a[qestdde Kjopip pUe UOLBUIULIDIGP [BINONNG Answonoadg ssep
i
ajdureg suopeyywy ajdweg suopew|] POy sadejusapy suopeayddy poYIdIN

(ponunuod) SINOINHIAL SISATVYNY TVINIWNILSNI NOWWOD #1314V




99

Butumsuod awi *Adossorotus *sojduses
2q ued uoyeredoad ojdureg umnoga [eondo weyy uonnjosal [lets jo uoninjosas sneds (nas)
i SPI{OS JO SUOTIOSS [[BWIS Y31y puesiim isnw sojdureg pue piay jo yidap 1982l y3wy pue £3ojoydiopy soepmg adoaso1oty uonoefg Furuuedg
noyp ‘sioutAjod
aq ues uoneledaid osydureg pUE SOTWEIID ‘S[EIdW (NA.L) odoosomdiy
1 SpI|OS JO SuoOLoas {[BWS aatsuadxa 2 mo[S uoneorjiufew yduy Kap JO sisAjeue [BINIONNSOINN uoIDa[g UOISSTWISURIL]
Jopmod 1O [BISAID Spumoduiod S|ELI21BW JUI[[BISAID
gww X | 213us jJo suonoas [jewig ssaooud mo[§ suieisK1o Kjuuap] 0 uonea1yUap! punodwod (say) uonoeiq Aer-X
JueLIodult A1aA [oUUOSIX aatsuadxaul A[aane]ay sejnolired
8u sajdures Jewg Jo 20uauadxa pue a8pajmou 15 1o sisA[eue aanEI[En)) Kdoosorny [eondQ
L puwe °L
saruadoad sanradoad
‘1190 [EDTURYDAW Ul SIOUISIJIP J11SB[2 PUB SNOJSIA JO (VING)
Sw 159) 01Ul 11j 1BY] SUOIIO9S [[BUIS sajdures pijos £q s[euaiew sajeredsg UONEZLI2}OBIBYD FANEINUEN) sis[euy [eatreydajy otureuk(
sansedoid
{Ex -sojdwes pinbi| sounawoad Auew JlIse[d pue SnodsiA Jo (S@y) se1pwonoadg
Sw 1591 O1UL 11] BY} SUOID3S [[eWIS pue pI{os Yioq o[puey ue) yim sonradord samsespy LONERZUIDIORIEYD 2AnEINUEND stureu£(] oudwIodYy
“s19q1j Jo ‘s1apmod
‘Swi1j ‘Sureoj se yons ‘sanuadoid [eotueyoowl souedio %
2715 ued sfdures *spinbyy pue spijos jo AyaLrea -OWLIAY} Ul $20UAIIYJIP ssswAjod Jo uonEZLIAOLIBYD (VAL
Su £q pawmunia)ap suonoas [[ewtg | areje ojpuey ued M) KA £q speuarew saystndunisicy aaneiuenb-twag sis|euy [eOIURYOIA [BULAY ]
*s1aql] 10 ‘siopmod
‘SWwy1j ‘sureoj se yons ‘a1aydsoune 3uIZIpIXo J0 112u] o1 ‘uondiosqe 1eay
-az1s ued ojdwres *spinbi| pue spijos jo Ai1atrea -painsgaw K[isea sonsadold £q sorreSsout 3 srowk[od jo (Osa) Answiofe)
Sw £q pouruuniap suonoos [jews | o3reye apuey ued imd) ISCYN [BWISY) Ut $30UIAYJI( UOLRZIIDIORIEYD FALIEINUEND) Suluuesg [enusIdJJIC
*s1aq1j 10 ‘s1apmod
93ue1 souejRqOINE ‘SWl] ‘Sureoj se yons -a1aydsoune urziptxo
pue ued ajdues jo azis ‘spinbi| pue spijos jo A1atrea 10 115u] "uonepe1dap fpuLiay) s3upieod a1m ‘s[eUAeW JO (VoL
3w Aq pauuLiz)ap ‘suonoss [[euts | o8re[ e apuBy UEd lMd) Kiap 0] 90UBISISAT SOMMSEBIN UONEZLISEIRYD AREINUEN]) | SISA[BUY OLIIWIABLD [BULSYL
Alsuadxd "s5aqt) 1o ‘s1opmod 210ydsoune
2q Ues JUSWWEIUOod sjdures ‘sutfij ‘sureoj se yons Suizipixo 10 uoul ut sansadoxd uotiudiome *Anawoe[iq
sajqtono adures *spinbi| pue spijos Jo A1aL1eA [EWSIY) Ul SI0UIAJIP SJUBUIWRIUOD 2 S[eUdsWl JO (CARG))
3w ul 11 183 SUONDIS [jewIg 23re[ 8 o[puey o ‘:M3] K1oA £q s{euew sajeredas UONEZUI2IOBIRYD JAEIIUEN]) sisA[euy [euuay ], [enuarajiq
azls
sjdweg suopeyuryy jduieg suopBWyY PO sadejueApy suopeajiddy POy

SANOINHOAL SISATYNV TV.INTFWNULSNI 1NJISN YIHLO " §'1d1dVL




) ) ) } | } ) i |
L9
[MLIp pue aalsuadxa S|eLajeW (aag vondeypq
SPYOS JO SUOIIIIS [{eiIg 2q ueo uoneredaid adeymg uonnjosal Y3y 3unonpuos jo sisfjewr soermg uonlg A31oug moy
SW{lJ UIy) pue sadsepns
Jo sis[eue juswala sae1],
Pa11sap $20B)mS R[4 Sutumsuos sum oq ues pue yidop ur wiu sisAjeue (SIS) Adoossonoadg
ur sjquedwos umnoea ‘prjog SANONISIP SI Sisk[euy G 01 | Wo1j UonN[osal poon reuontsoduios aoejmg ssejy uo] Arepuoosag
suiy
swons3uy ‘swonsduy puesnoy utyien(n Jo Suiyosd yida(g
wo 60’0 puesnoy je1aaos aftyoud yidop [12A9$ YSnoys siuauifs 10§ saoejns (sSD
0] umop ajqueduwios umnoea * pijog 01 Swumsuos suny 3q ue) azA[eue ues uisjijord yidagg U0 SIUAWIL? JO UOHEDIJIIUSP] Adoosonosadg Suuaneog uof
(v2s3) stshjeuy [eatway)d
uonedluuapt Aels [eotwayy | Ioj Adoosonaadg uonossig pue
pidex pue sanemueng) s8uneoo pue (SdX) Adoosonoadg
wod | siqnedwos wnnoea ‘spijog ‘urt 0 do1 Ajuo sareSonuj DATIOMNSIPUON $30BJMS JO sisA[eur [eluswalg uondppooy Ael-y
‘wu W
01 umop oiqueduiods umnoea aaneuenb-tuag 01 12ddn ut sanisuas soeymg saoejIns Sunonpuoo (sav)
suolonu *2ATONPUOD 9q ISNW ‘SPI[Og H Pue o} 01 sanIsuasuy ‘uonlinjosal jeneds ydiy Jo stsf[eus jeuonisodwoy) Adoosonoadg uonosayg JoSny
aZ|§
3)duieg suopeyy sjduieg suopEw| POYIRA sadejueapy suopedjddy POYIdN

SANOINHOAL SISATYNV H0VA4NS NOWWOD * 9'1 I1dV.L




Infrared spectroscopy is usually a good place to start. Due to the variety of
sampling accessories available, this technique can accommodate most types of samples.
Infrared provides information about the organic and inorganic functional groups present,
and an estimate of the sample's purity.

Functional groups present in a material can be identified by infrared
spectroscopy with the aid of correlation charts, such as the ones pictured in Figures 1.29
and 1.30. These charts summarize the characteristic frequencies of the major functional
groups. Frequencies associated with carbon-carbon and carbon-hydrogen bonds are
pictured at the top of each chart. Functional groups containing oxygen and silicon
atoms are featured in the middle of each chart. Characteristic frequencies of groups
containing nitrogen, sulfur, phosphorus, and the halogens are shown at the bottom.
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Figure 1.28. Correlation Chart of Infrared Group Frequencies, 1500-3700 cm-1
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Figure 1.30. Correlation Chart of Infrared Group Frequencies, 600-2000 cm-1

When cautiously used, correlation charts can be valuable tools in the
interpretation of infrared spectra. However, correlation charts alone can seldom
unambiguously establish the molecular structure or identify an unknown material. Group
frequency ranges are determined empirically from a large number of samples and are
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often broad. Group frequency ranges may overlap each other considerably. Because the
physical state of the sample (i.e., the sampling technique) can cause band frequency
shifts or broadening, the sample should be run under conditions similar to those used
during compilation of the correlation chart. Throughout the interpretation process,
always keep in mind all of the information known about the sample, such as its physical
state, results of other analyses, and elements known to be present or absent.

If the sample is a complex mixture, it may be possible only to identify the major
functional groups present. If the material is a pure compound, it can be unambiguously
identified if its spectrum exactly matches the reference library spectrum of a known
compound. When infrared spectral libraries are not available or no match can be found,
the compound's molecular structure can sometimes be deduced by interpretation of the
infrared spectrum with the aid of the correlation charts. The following general
procedure may be successful:

L Look at the group frequency region (4000 to 1350 cm-l) first,
concentrating in turn, on the strong bands, then on the medium intensity bands.

IL. Look at the 2800 to 3300 cm-! region to determine the presence and
types of carbon-hydrogen vibrations.

A. No bands at 2800-3300 indicates no C-H bonds. Consider totally
halogenated organics, or inorganics.

B. Bands at 3000 to 3300 cm-! indicates presence of unsaturated carbon
atoms or a halogenated compound.

C. Bands at 2800 to 3000 cm-! indicate presence of saturated carbon
atoms.

III.  Now look at the rest of the group frequency region.

A. Bands at 1450-1465 cm-! indicate presence of methyl (-CH3) or
methylene  (-CHjy-) groups

1. Abandat 1375 to 1380 cm-! indicates C-CH3

2. Aband at 718 to 720 cm-1 indicates a string of 7 or more
methylene groups

B. Bands at 1470 to 1525 cm~! and 1565 to 1620 cm-! indicate presence
of aromatics. Use Figure 1.29 to determine substitution pattern.

C. Continue to interpret the strong (and then the medium) intensity bands

in the group frequency region. Follow-up on each interpretation by examining
other regions of the spectrum. As examples:
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1. A band observed at 1715 cm-! indicates the presence of a
carbonyl (C=0) group. Is the compound a carboxylic acid,an
ester, a ketone, or an amide? The presence of two bands near
and 3520 cm-! along with a strong band near 1600 cm"1, would
identify the compound as a primary amide.

2. A strong band is observed at 1060 cm-1 . Is the compound an
ether, a siloxane, or an alcohol? A strong band at 3600 cm~1
would identify the compound as an alcohol.

The following generalizations should be kept in mind:

A. Not all of the bands can be interpreted as group frequencies. Some
bands are due to vibration of the molecule as 2 whole. Other bands are
due to combinations of fundamental group frequencies.

B. Aromatic compounds tend to give sharp bands.

C. Spurious bands may appear (i.e., bands not attributable to the sample).
For example, bands at 3300-3700 cm-1 and 1600-1800 cm-1 may be due
to water in the sample or in the atmosphere within the sample
compartment. Similarly, bands near 2325-2350 cm-1 and 670 cm-1 may
be caused by the presence of carbon dioxide.

D. The infrared spectrum alone may not provide enough information to
identify the compound. Never ignore information from other analyses.

Figure 1.32 is a guide for the selection of a chromatographic method.

Selection is based on three sample properties:  volatility, complexity, and
polarity.  Speed, resolution, and the quantity of sample should also be
considered. In general, gas chromatography surpasses liquid chromatography in
resolution and speed. Capillary columns (or open tubular columns) give the best
resolution, but packed columns can accommodate larger samples.
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1,2,3,4-tetrasubstituted 800-860 -
1,2,3,5-tetrasubstituted 860-900 -
1,2,4,5-tetrasobstituted 860-900 -
pentasubstituted 860-900 -
hexasubstituted - -
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P!;ysical Volatility Complexity Polarity Chromatographic Method
ate
e Seren”
high GC/rCr
_cmmle_x__i GC/CCNNS
GC/CCP
touid _s,m_dt GC/PC/NS, GC/CC/NS, LC/RP
of solid medium GC/PC/P, GC/CC/P, LC/NP, IC
M GC/CC/NS, LC/RP
GC/CC/P,LC/NP, IC
LC/NP, IC
low
LC/NP, IC
simpl
22 { con? Tex GC/PC/SA
I GC/PC/SA, GC/CC/SA
GC gas chromatography LC liquid chromatography
PC packed column RP reverse phase
CC capillary column NP normal phase
NS nonpolar stationary phase IC ion chromatography
P polar stationary phase
SA solid adsorbent

Figure 1.32. Selection of a Chromatographic Method

The sample's volatility, complexity, and polarity are often known or can be

surmised based on information provided by the customer.

If necessary,

a

microdistillation can be run to determine volatility. An infrared spectrum will identify

functional groups and provide information about the sample's polarity and complexity.

If it is determined that the sample is volatile enough to be run by gas
chromatography, Table 1.7 and Figure 1.33 can be used as guides for stationary phase
and detector selection. If the sample is nonvolatile or thermally unstable, an LC

separation mode can be selected
weight according to Figure 1.34. If the sample is believed to be compose

based on the samples solubility, polarity, and molecular
d of a wide
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molecular weight range of species, or if it is thought to contain species with molecular
weights over 2000, size exclusion chromatography should be considered.

Required Response Selectivity Required Detection Limit Appropriate Detector
universal detection (general 10 ppm TCD, thermal conductivity
survey)
nearly universal (most organics) 0.1 ppm FID, flame ionozation
compounds containing notrogen or 1 ppb TED, thermionic emission or NPD,
phosphorus nitrogen-phosphorus
compounds containing 1 ppb _ ECD, electron capture

electronegative atoms, halogenated
and sulfur containing compounds,
anhydrides, nitrates, nitriles,

peroxides
highly selective for many classes 1 ppm MS, mass spectrometer
of compounds, compound 1 ppb SIM, mass spectrometer with
identification possible selective monitoring

Figure 1.33. Detector Selection for Gas Chromatography.

Types of Separations Required Polarity Stationary Phase Composition
hydrocarbons, gases nonpolar hexamethyltetracosane
gneral purpose nonpolar poly(dimethylsiloxane)

(boiling point separation)

genral purpose nonpolar poly(dimethyl(diphenylsiloxane)
aromatics, olefins (80% methyl, 20% ohenyl)
aromatics, phenols semipolar poly(dimethyldiphenylsiloxane
glycols (50% methyl, 50% phenyl)
alcohols, esters, ketones polar polyethyleneglycol

carboxylic acids

Table 1.7. Stationary Phase Selection for Gas Chromatography



acidic > gnion exchange

__ionic or lon parr
basic — cation exchange
or ion pair
_water soluble

poppolar g reverse phase

nonionic polar —»- normal -;ilase

MW < 2000 | Eol. wi, difference 2 10%. gel filtration

nonpolar —p- reversc phase

organic soluble | polar ——»= normal-phasc

molecnlar weight difference 2 10% - gel permeation

water soluble —- o¢l filtration
MW > 2000
water insoluble ——Jo- oel permeation

Figure 1.34. Selection of a Liquid Chromatographic Mode

Real samples cannot always be classified as totally volatile or nonvolatile.
Consider, for example, a polyurethane foam formulation containing extremely volatile
components, such as CFC or HCFC blowing agents, along with nonvolatile, polymeric
alcohols and siloxanes. In this type of situation, it is necessary to use both gas and
liquid chromatographic procedures to isolate each ingredient.

Once a chromatographic separation has been obtained, the separated components
can be collected and identified by IR, MS, or NMR. Coupled, or hybrid, instrumental
techniques such as GC/MS, GC/IR, or LC/MS permit both separation and identification
of unknown components in a single instrumental procedure.

If the elemental composition of the sample is of interest, a qualitative survey
analysis can be obtained by XRF provided the sample is nonvolatile. For quantitative
elemental analyses, or for volatile samples, an atomic spectroscopic technique can be
selected based on the elemental detection limits shown in Figure 1.35. In selection of an
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atomic spectroscopic method, the advantages and limitations of each method (given in
Table 1.4) should be kept in mind. For example, the lower detection limits provided by
furnace (electrothermal) atomic absorption are accompanied by decreased precision and
increased analysis time. Both ICP/AES and ICP/MS are capable of multi-element
analysis, while only one or two elements can be determined simultaneously by AA.

As stated before, no single procedure exists for the selection of the best
instrumental method combination to solve an analytical problem. As an example,
consider a polyurethane foam material received as two components, one of which is a
mixture of polyols, flame retardants, catalysts, surfactants, and blowing agent. Some of
these ingredients are mixtures themselves, and some contain solvents. The ingredients
differ significantly in concentration, molecular and elemental composition, and physical
and chemical properties. Because of the material's complexity, a combination of
instrumental methods is required. FTIR can be used to identify the functional groups
present, and to monitor the composition of the polyols which are present at a high
concentration level. GC can be used to monitor the more volatile constituents. Because
of the wide range of volatilities and concentrations, more than one GC procedure is
required. ICP/AES or other atomic spectroscopic methods can the be used to measure
levels of specific elements, such as phosphorus, silicon, potassium, or tin to monitor the
flame retardants, surfactants, and catalysts present in the material.
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20 CHEMOMETRICS

Chemometrics is a discipline within analytical chemistry concerned with the selection
and optimization of instrumental methods as well as the interpretation of data from these
chemical analyses. Chemometrics makes extensive use of mathematical and statistical
methods with the intent of producing a maximum of concise chemical information.
Given these mathematical underpinnings, this section presents a description of a number
of the most useful methods together with a discussion of their application to the
resolution of problems solved by chemical fingerprinting. '

Chemometrics has undergone rapid evolution and proliferation due, in a large part, to
the availability of computer hardware and software capable of complex calculations
performed on large quantities of data. Although excellent statistical software packages
(programs) running on a variety of computer platforms exist, little or no guidance is
usually given for the appropriate application of the individual procedure(s). The
practitioner, therefore, must employ his combined knowledge of chemistry, statistics,
and the nature and source of the data to ensure that the correct computations are
performed. It is the purpose of this section to offer some useful advice in these matters.

2.1 Basic Statistics

The purpose of any quantitative chemical analysis is to obtain a valid estimate of the
true value of the chemical characteristic being measured. Variation is ever present and

inevitably produces a certain amount of uncertainty in the outcome. This uncertainty is
called error. All variation and the associated errors can be categorized into four main

groups:
Common causes - the collection of factors which produce relatively small and

random changes in results and are sometimes referred to as system errors. While
these errors can be minimized, they generally cannot be eliminated.

Special causes- factors which sporadically introduce variation over and above
inherent system variation. Sometimes called assignable causes because the
source can usually be discovered and corrected.

Structural causes - regular systematic changes due to cyclic factors such as
day/night, moming/afternoon, and seasonal changes.

Tampering - variation induced by unnecessary adjustments usually made in a
vain attempt to compensate for inherent (common cause) fluctuations.

It is imperative that the analyst be able to distinguish between these causes as the
appropriate remedial measures for each are quite different. When viewed as a process,
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most analytical procedures can benefit substantially from the application of modern
statistical process control (SPC) methods.

When an analytical chemist performs replicate analyses on the same sample using the
same procedure(s), instrument(s), and reagent(s), the individual results will be found to
vary from one to another due to common causes (system error). While these results do
differ, they also exhibit a strong tendency to cluster around a certain value. This value is
the mean or arithmetic mean, or simply the sample average. Mathematically it is sum of
the individual results divided by the number of these results and is denoted by "x". This
sample mean is a statistic and therefore an estimate of the parameter known as the
population mean which is denoted by "u". Note that there is a very important
distinction between the statistic derived from sampled data and a population parameter.
It is seldom if ever that we have available the complete set of observations for the entire
population which would allow us to compute the population parameters (M, s2, and ).
It is, therefore, necessary to calculate estimates (statistics) of these parameters based on
measurements performed on samples drawn from the population (x, s2, and $).

B = Z(xp/N
X = Z(xp/n
Where: xj= individual observations

n = number of observations
N = total population

The mean is the most useful statistic. Other statistics include the mode, the median, and
the midrange.

The mode is defined as that observation which occurs most frequently in the data set.

The median is defined as that observation which, when the data are arranged in order of
magnitude, is the middle value.

The midrange (MR) is defined as that observation which is halfway between the largest
and the smallest observation.

Midrange = (Xmax - Xmin)/2

These statistics all provide information about the location of the center of the data and
are also known as measures of location. This information, while useful, is less than
complete. An adequate description should also include a measure of how much the
individual observations differ from the chosen measure of location. Collectively these
quantities are known as measures of dispersion or measures of variation and include the
range, the mean absolute deviation, the variance, and the standard deviation.
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The range is the simplest measure of dispersion and is numerically equal to the
difference between the largest observation and the smallest.

Range = (Xmax - Xmin)/2

The mean absolute deviation is defined as the mean (average) of the absolute values
obtained by the subtraction of the arithmetic mean from each observation. Itis therefore
a measure of how much, on average, each observation differs from the mean.

Mean Absolute Deviation = ZI(Xj - x)lm

The variance is a measure of dispersion calculated by summing the squares of the
differences of the individual observations from the mean, and then computing the mean
of this sum. It must be pointed out that there are two forms of this measure: the
population variance which is a parameter and denoted by "s2" and the sample variance
which is a statistic and denoted by "s2". As with the two means above, this is an
important distinction.

o2 =Z(x; - W2 /N
2 =3 (xj- )2 /(n-1)

The standard deviation is defined as the positive square root of the variance and also

has two forms: the population standard deviation denoted by "s" and the sample

standard deviation denoted by "s”.
o = [Z(xj- *)2/N]I/2
s = [S(x; - X)2/(n-D]2

Another term frequently encountered is the coefficient of variation (C.0.V.) or relative
standard deviation and is defined as the standard deviation expressed as a percentage of

the mean.
(population) relative standard deviation = 100 (o/p) %

(sample) relative standard deviation = 100 (o/X) %
Note that measure of relative dispersion cannot be used in cases where the individual
observations take on both positive and negative values as, for example, after a data

transformation which has placed the mean at a value of zero.

A word of explanation about the denominator "(n-1)" in the above equations.This
quantity (the number of observations minus one) is the degrees of freedom (DF) for the
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statistic and is, in general, equal to the number of observations minus the number of
constants calculated from them. Since the mean (x) must first be calculated before the
variance (s2) can be computed, this "uses up" one degree of freedom and therefore DF
= (n-1). If "n" rather than "n-1" were used, it can be shown that the variance would be
biased (underestimated) by a factor of (n-1)mn. It is intuitively obvious that as the
number of samples increase so does our confidence in the calculated estimates. There
is, however, a point beyond which additional samples produce a very small increase in
confidence and this value is approximately 30 samples.

When one looks closely at the data, there appears to be a pattern of the dispersion of
observations about the central location. This pattern is called a distribution. A
distribution can be also be depicted graphically by an "X - Y" plot of the frequencies at
which given observations occur ("Y" axis) versus the observation- values ("X" axis). A
number of distributions exist and include the normal, the binomial, the Poisson, the chi-
square, the 1, Weibull, and the F. By far the distribution used most often in analytical
chemistry is the normal or Gaussian.

The graphical representation of a normal distribution of a large number of observations
can be accomplished by grouping the observations into classes, each a small and
consistent range of values, and then counting the number of observations belonging to
each class. If one next constructs a series of rectangles whose width is the class interval
and whose height is proportional to the number of observations in that class, then a
histogram 1is created by placing the rectangles, in ascending order of class magnitude
along the "X" axis (left to right) in a contiguous fashion (see Figure 2.1). Note that the
individual areas of these rectangles are proportional to the density (number) of
observations in those classes. To make additional observations from the population, the
probability of obtaining a given value is then determined by the ratio of the area of the
class rectangle (to which it belongs) to the total area of all the rectangles. Successive
observations occur most frequently at values within the clgss intervals of those
rectangles having the greatest area.

More observations can be made and placed in smaller and smaller class intervals as
shown in Figure 2.1(b) - 2.1(c). In the limit, the smooth and continuous bell shaped
curve of Figure 2.1 (d) is formed. This is the well known shape of the rormal
distribution and is a continuous probability density function symmetrical about a central
value which is the mean "u". In fact, the curve (function) is described by the following
equation:

(x~p)?
y=[1/c@2n)"?)e 2’

Where : t=13.14159....
e=2.71828....
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The above equation contains two constants, "u" and "¢", the values of which uniquely
determine the location of ("X" axis) and the shape (peaked or broad) of the distribution.
A common chemical example of this distribution is the shape of the chromatographic
peak. The mathematical term for the shape of this curve is kurtosis; broad curves (large
values of "o") are platykurtic while narrow curves (small values of "c") are leptokurtic.
Note that the curve approaches the "X" axis asymptotically (never reaches zero

probability) when moving away from the mean "s" in either direction.

(c) (d

Figure 2.1 Histograms of Decreasing Cell Size

A standardized form of the normal distribution, used in many statistical tables, is created
when the value of "+" is set to zero and the value of "s" is made equal to one. This
standard normal distribution has been extensively studied and is well documented in
numerous tables. Normality is a remarkably valid assumption for many distributions
found in both analytical chemistry and science in general.

If the standard normal distribution equation is integrated for values of "X" over the
range of minus infinity to plus infinity, the total area under the curve is equal to one, the
"X" axis is in units of +/- s(usually denoted by "z" or "z score”), and the maximum is
located at zero. Any real distribution with a known "p" and "c" can be transformed into

this standard normal format by this equation:

z = (X-p)/o
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This transformation is extremely useful. The area under the curve between any two
values of "z" is the percentage of the population included within these values. For
instance, the area under the curve between "W" and either "+10" or "-16" is 0.3413
representing 34.13% of the population. The area between "-26" and "+26" is 0.6826
representing 68.26% of the total population. Almost all (99.73%) of the population is
bounded by the interval "-36" to “+36". Since these areas also represent probabilities,
questions like: "What is the probability of obtaining an observation with a value equal
to or less than "W" minus "6"? can easily be answered. The answer is easily calculated
to be 15.87%." This also means that in a sample containing 25 observations we would
expect that four will have values less than or equal to "p" minus "o".

The ability to transform sets of observations into their equivalent "z" values provides us
with a method to scale sets of very different types and numerical ranges for easy
comparison. This normalizing technique is also useful in the analysis of multivariate
data.

Although the mean "x" of a set of observations provides an estimate of the population
mean "“W", it is very unlikely that "x" is exactly equal to "u". There are two reasons for
this: (1) the random error in the measurement and (2), the number of observations used
to calculate "x". If another equal number of observations are performed on a sample
from the same population, the "x" from this set will probably not equal the "x" from the
first set. Repeating this process would yield a series of "x's”" which would, in turn, have
a normal distribution about a central value - "W". This is the Central Limit Theorem and
is true even if the population from which the “x's" came is not a normal distribution!
This distribution is known as the sampling distribution of the mean and has a mean of
"W" and a standard deviation equal to "o/(n)2" The term "o/(n)/2" is called the
standard error of the mean and gives a measure of the uncertainty associated with
estimating "i" from "x". Since, in practice we seldom know the value of "s" and must
use the estimate "s"; "s/(n)1/2" is usually not identical to "c/(n)1/2".

A statistic, "t" has been introduced to compensate for both "s" and the confidence limit
we place on our estimate of "u". The value of "r" depends on both the confidence
interval (usually 95%) and the degrees of freedom (DF) for computing "s". We can now

state the range of values within which we are confident "|" exists as follows:

L=X * ts/(n)l/2
This "¢" is itself a distribution having the normal or Gaussian shape. The "t" tables are
rows and columns for confidence interval and degrees of freedom respectively. As the

degrees of freedom increase, the kurtosis of the " distribution approaches that of the
normal curve.
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The "+" statistic affords a means to perform tests on certain conjectures or hypotheses.
For example: does a method have a systematic error when analyzing a sample of known
value? In comparing two different analytical methods, do they give results (means)
which differ significantly or are the differences due to chance alone? The test procedure
will compare the derived 't' statistic to the table of 'teritical values or as usually called,
the 't table'. If the calculated t for the sample set is higher than the critical t, then the two
methods do differ significantly.

Example. The values from the determination of the percentage of a known

analyte(38.9%) are:
38.9% 37.4% 37.1%

Is there any evidence of systematic error?

Calculations using the various software or calculators gives the values for the
mean = 37.8% and for the Std. Dev. = 0.964%. Therefore the calculation for t is
given by:

t= (389 - 37.8) (3/0.964)1/2 = 1.98

From the "t" Table for DF =2 and 95% confidence level, the critical value for
" is 4.3. Since the calculated "' (1.98) is less than the critical "" value (4.3)
there is no reason to suspect a systematic error10,

There are also instances when, instead of comparing means, we wish to assess the
precision of two different methods which amounts to a comparison of the variances (s12
VSs. s22). Another statistical test known as the "F" test permits this kind of comparison
by considering the ratio of two variances. By convention the larger of the two variances
is always the numerator so that the value of "F" is always equal to or greater than one.
If the differences between variances are small, the value of "F" is close to one and the
differences are probably due to chance alone. Larger values of "F" imply differences
too great to be attributed to random causes. The degrees of freedom for the two
variances need not be equal, but both have an influence on the value of "F" and the
decisions based upon it. The tables of critical values for "F" are constructed in rows and
columns of DF of the numerator and denominator respectively and provide for a
selection of confidence intervals as well. Performing the “F" test involves computing
the "F" from the variances and for a given confidence interval and DFs, finding the
critical value from the "F" tables. Once again, if the computed "F" is greater than the
critical value, real (statistically significant) differences in the variances exist.
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Example . A proposed method is to be compared to an existing method for the
determination of chemical oxygen demand in a standard sample. Eight
determinations by each method produced the following results:

Mean (mg/l.) Std. Dev. (mg/l.)
Existing Method 72 3.31 (s1)
Proposed Method 72 1.51 (sp)

F7,7=(s1)%/(s2)% = (3.31)2/(1.51)2 = 4.8

From the "F" Table for DF| = DF5 = 7 and 95% confidence level, the critical
value for "F" is 3.787. Since the calculated "F" value (4.8) is larger than the
critical "F" value (3.787), the proposed method is more preeised.

The "F™ statistic is also a distribution but, unlike the "", it is a quadratic function and is
skewed ("tails out") to the right.

There arise, from time to time, situations in which one or more of a set of observations
appear(s) to be quite different from others in the set. The term for this observation is
outlier. The outlier, upon examination, may be found to be the result of human error
such as the transposition of numbers or the misplacement of a decimal point. Even after
the correction of these errors, observations which appear to be outliers may still be
present. The analyst is now faced with a difficult decision: should these observations
be retained or rejected? The values of the statistics ("x", "s2", and "s") computed from
the observations will depend on whether or not the outlier(s) are included in the
statistical calculations. One possible reason for the presence of outliers is that our
assumption of a normal distribution is not valid. In this event, a test for distribution or
frequency is appropriate.

Note that in the Central Limit Theorem that multiple determinations of the sample mean
"x" from samples of a population has a normal distribution about the population mean
"W" with a standard deviation of "o/(n)1/2* which can be estimated by "rs/(n)1/2." What
about the distributions of the sample variance "s2" and the sample standard deviation
"s"? Like the "F" statistic, the sample variance is a quadratic function and it follows
what is called the "chi-square" distribution. This distribution is the basis for the "chi-
square” test which is used to determine if an observed distribution of observations is
drawn from a population having a certain theoretical distribution (goodness of fir). The
test is performed by sorting the observations into classes of observed frequencies;
calculating the "chi-square" statistic by taking the sum of the squared difference
between the observed and expected frequencies divided by the expected frequency for
each class. The degrees of freedom (DF) for this calculation is equal to the number of
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classes minus one. The calculated “chi-square” value is then compared with the “critical
value" found in a table at the desired confidence interval and DF. If the calculated “chi-
square” value is less than the critical value, the theoretical distribution is considered to
be valid.

If, however, the assumption of a normal distribution is valid, then there is a test called
the "Q" test or "Dixon’s Q" which can provide some guidance for the accept/reject
decision. Like the other test statistics, the critical values for "Q" are given in a table.
The test is performed by computing the "Q" ratio and then from the table finding the
critical value of "Q" for the desired confidence interval and number of observations. If
the computed value of "Q" is greater than the critical value, the suspect observation is
rejected. The "Q" ratio is calculated by dividing the absolute value of the difference
between the suspect observation and the observation nearest to it by the range of the
observations (including the suspect value). Note that the rejection of an outlier can have
a dramatic effect on the values of both the variance and standard deviation. The
confidence interval implies that there is a small but finite chance of making the wrong
decision, hence caution is advised in working with these concepts. If more than one
observation in the set is suspect, the situation is more complex and the observations
should be repeated or the problem referred to a statistician.

Most modern analytical chemical instruments can usually make accurate observations
over a considerable range of values (several orders of magnitude) requiring that the data
be treated in a manner that is different from the methods employed in the analysis of
repeated single measurements. The usual procedure involves performing observations
on samples from populations whose values are known (standards), including a blank (no
analyte) sample, and span the range expected for the "unknown" samples. From these
data, a "calibration curve" is prepared and, by interpolation, is used to determine the
value(s) of the unknown sample(s). Most analytical instruments are designed such that
the signal is a linear first order function of the sample value (Figure 2.2). Ideally, this
straight line function should pass through the origin (no analyte, no signal) and have a
steep slope (dy/dx) as this is a direct measure of the instrument's sensitivity. This ideal
relationship can be expressed in this form:

y=a+bx

Where : a = the "Y" intercept (ideally = 0)
b = the slope (ideally > 1)
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Figure 2.2 Typical Instrument Calibration -
A detailed consideration of this approach raises a number of important statistical issues:
1. Since this line must be “firted” to the experimental data, which always
contains error, what is the "besr line” throu gh these data?
2. What are the error estimates for the constants "a" and "b"?
3. What are the error estimates for values predicted by the "best line"? -
4, What is the least analyte value that can reasonably be determined (limit of
detection)? ~
5. How valid is the implicit assumption that all errors are in the "Y" values and
the "X" values are error-free? -
6. If each of the "Y" calibration values is the mean of several observations, are
the variances of these values equal? -
7. Can a quantitative “figure of merit" be computed to describe how well the "Y" -
calibration values match the values predicted by the equation of the “besr line"?
The most universally accepted answer to Issue #1 is the method of least squares. Using
the assumption that all error is in the "Y" values (Issue #5), the “best line" is the one
which minimizes the differences between the observed and predicted "Y". Since these -
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differences (known as residuals) can have both positive and negative values, it is
rcustomary to attempt to minimize the "sum" of the "squares" of these residuals. Most
statistical software and many inexpensive pocket calculators can perform this task easily
and will output values for the constants "a" and "b" as well as a value for the

ncorrelation coefficient” (Issue #7).

It is also possible to calculate a statistic, analogous to the sample variance, for both the
"a" ("Y" intercept) and the "b" (slope) constants (Issue #2). These statistics are often
provided by the statistical software also.

The estimation of the error in obtaining an "X" value from an experimental "Y" value
(Issue #3) is a mathematically complex undertaking and, if required, should include the
assistance of an experienced statistician. Formulae for an approximation of this error
do, however, exist and suggest that the error will be the least when the "Y" values are
nearest to the "centroid" of the "best line.”

“Limits of Detection" (Issue #4) considerations arise during trace analysis or when the
"blank" standard produces a measurable instrumental response ("Y" value). There are at
least two reasons, one chemical and one statistical, for this "blank" response. The
chemical reason may be due (0 "interferences" or “matrix effects" and may be
ameliorated by "spiking" of the samples using the "method of standard additions.". The
statistical reason, however, is more complex and is a subject of much controversy. A
reasonable working definition is very method and sample specific and should, therefore,
be documented in the reported results.

Our confidence in the assumption of an error free "X" axis (Issue #5) is inexorably tied
to our confidence in the accuracy of the calibration standards we use. The need for this
assumption is fundamental to the method and consequently the great care and attention
given to the preparation, storage, and use of these calibration standards cannot be
overemphasized.

If the "Y" values (signals) are the mean of several observations (Issue #6), it is not
unusual to find that the variances associated with these means increase with increasing
values of the means. Clearly, the values having the smallest variances should exert a
greater influence in the determination of the "best line" than those with larger variation.
It is possible to assign "weights" to the "Y" values which are inversely proportional to
their variances and use these "weighted values" to compute the "best line." Note that the
centroid, and along with it, the zone of least error will be moved down the "best line"
closer to the origin, thereby improving the accuracy of the smaller sample observations
(Figure 2.3).
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Figure 2.3 Weighted Regression Line

The "correlation coefficient" (Issue #7) is usually provided along with the values for "a"
and "b" in the "best line" equation by the statistical software and is denoted by "r". The
values for this statistic range from -1 to +1 with "r = +1" indicating a perfect point-by-
point correlation along a "best line" having a positive slope (b > 0). For "r = -1" a
perfect negative correlation (b < 0) exists. For "r = (" there is no correlation ("X" and
"Y" are independent). The square of the "correlation coefficient" (r2) is known as the
"coefficient of determination" and is a measure of the proportion of the variation of the
"Y" values accounted for by the "X" values.

2.2 Design of Experiments

The process of formulating an accurate, reliable, and efficient plan for the investigation
of the effects of certain "factors" on the performance of a "system" is the focus of
Design of Experiments . An analytical chemist involved in "fingerprinting” is faced
with a task broader than just the measurement of a chemical or physical property of a
material. The proposed measurements, in many cases, must be evaluated in the context
of their ability to provide some or all of the information necessary to successfully
Jingerprint the product or material under investigation. Design of Experiments
methodology is especially valuable for systems with multivariate relationships. Design
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of Experiments is the planning activity which precedes and interacts with the phases of
method development, data acquisition, data treatment/processing, and data
interpretation. Design of Experiments can, and has been, successfully applied to a broad
spectrum of scientific and engineering investigations.

The approach to a scientific investigation is composed of answering a number of well-
phased concise questions. These questions define the analytical problem and are
formulated on the prior development of a model of the system under investigation. A
complex system may require more than one model, each of which may constitute an
independent investigation. The models most commonly used are polynomials of the
first or second degree which have been demonstrated to be adequate descriptions for the
vast majority of systems. The model will, in turn, define the requirements for obtaining
the necessary information including the data and its quality -(accuracy, precision,
repeatability, etc.).

The Design of Experiments strategy is generally a sequence of plans created to identify,
analyze, and optimize the effects of factors on a system Or analytical method under
investigation. The first phase is a screening design and will identify those factors (and
any interactions between them) which have a statistically significant effect on the
performance of the system. The screening experiments segregate the "vital few" from
the "insignificant many." The next phase will separate and elucidate the “main effects”
from the "interactions." The third phase will provide a mathematical model (see above)

of the "response surface" for the system and thereby guidance for system optimization
Figure 2.4 illustrates the methodology one might perform is carrying out such a design.
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Figure 2.4 Evolution of an Experimental Program

Although all experimentation requires careful planning, some simple investigations need
no special considerations (as in the case where only one factor has an effect on the
system's performance). Design of Experiments, however, offers considerable
advantages in both the economy of experimental resources and maximum production of
information especially where there are a number of factors to be investigated. The
"classical" approach in which the system's response is explored for each factor in turn
while all other factors are maintained at some constant level is not as efficient nor as
informative as the "facrorial" method of Design of Experiments. The factorial method
measures the system's response at all or some fraction of the possible combinations of
the chosen (usually two or three) levels of the factors, There are two convincing reasons
for the choice of the factorial over the classical method:

1) The factorial detects and estimates any interaction between factors while
the classical method cannot.

2) The factorial requires fewer experiments than the classical method for the
same precision.

It can be demonstrated that for "k” factors, a classical approach involves "k" times as
many experiments as the factorial approach for the same precision. The factorial design
approach involves measures for "k" factors with "p" levels for a total of "pK"
experiments. For example, for three factors at two levels each, the factorial method
requires 8 experiments, while the classical method requires 24 experiments (see Figure
2.6).

In order to understand the factorial design concept, it is necessary to introduce the idea
of "measurement space.” Each of the factors is assigned an axis orthogonal to the rest
resulting in a "space filling" model encompassing the "experimental volume" of the
system. For example, a system involving three factors would be represented as a three
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dimensional cube (Figure 2.5). It is not possible to visualize a cube in more than three
dimensions (a hypercube), however, the mathematics generalized from three dimensions
are valid. An additional benefit of factorial designs is the "hidden replication" inherent
in the geometry of the design. For obvious reasons, it is desirable to maximize the
“"experimental volume" by choosing large ranges (tempered by good judgment) for the
factors. This is known as "bold" experimentation.

Factorial experiments are generally performed at either two or three levels of each
factor. The two level designs are represented as 2K factorials where "k" is the number of
factors. These two level designs will not detect any "curvature" in the data and are
limited to linear first order applications. In many cases a "fractional factorial” design is

adequate; it

Factor #2

f

NOTE: A classical ‘one-at-a-time’
method would require 24 runs!

— B Factor #1

Two levels for each factor
Factor #3 23= 8runs

Figure 2.5 Factorial Design

is not necessary to perform the full factorial number of experiments. The fractional
designs require 1/2 to 1/8 the number of experiments of the full factorial design and are
well suited to the "screening” of potential factors to identify those which are critical to
the selection and development of an analytical method.

The three level designs are represented as 3K factorials where "k" is the number of
factors. These designs will detect "curvature” in the data and are sometimes called
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“"limited response surface" models. The principle of fractional factorials can be
extended to the three level designs and require 1/3 to 1/27 the number of experiments of
the full factorial design.

A special form of two level fractional factorial design known as "Plackett-Burman" is a
very economical screening design frequently useful when the number of factors are one
less than multiples of four (3, 7, 11,15, 19, 23, 27, 31, etc.).

The design strategy uses some of the experiments from the screening phaseé as elements
of the limited response surface design (by inclusion) and further reduces the number of
required experiments. This process of “overlaying" the designs is carried on to the
response surface designs with similar economy.

The preparation of any of these factorial designs is not a trivial undertaking and is
usually a task for the statistician. The individual experiments are dictated by the
geometry of the design and must be performed exactly as specified (even though the
analyst may think the specified conditions are unrealistic). Clear written instructions
and close supervision should be provided. The data analysis and interpretation are a
form of "Analysis of Variance" (ANOVA) and should be performed by, or under the
supervision of, a statistician. Experience has shown that success with design of
experiment is only achieved by close cooperation between the anaytical chemist and the
statistician. Figure 2.6 presents a convenient guide for designs involving up to eighteen
independent variables.

INTERACTIONS (D NO INTERACTIONS
XES NO 2 12 212 13:18
2 Level Desigas 12Run PB 12Run PB 12Run PB !12Ren 28Ran PB
32 Fruc. 29 Run PB 20 Run PB 28RunPB PB
Faciorial 16 Run 16 Ron 16 Run 28 Run
Frac. Frac. Frac. PB
Fractorial Fractorial Fractorial

Figure 2.6 Selection Guide to Experimental Designs

It is the intent of design of experiment to provide information for the selection of factor
values which will maximize the response of the dependent variable. Performing this
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task is known as "optimization.” If no significant interaction between factors exists, this
task is relatively simple. In the presence of interactions, however, the task can be quite
complex. As stated earlier, the description of the response surface takes the form of a
first or second degree polynomial equation in the "k" factors. Visualizing the surface
when "k" >2 is not possible and solving the polynomial equation for maximum response
in "k" factors is computationally intense. In those situations where the objective is to
reach the optimum response and a "model" of the response surface is not required, a
procedure known as the "Simplex Method" is an excellent and economical approach.
This "Simplex Method" should not be confused with the "Simplex Technique" of linear
programming or the "Simplex Mixture" design of formulation problems. A “simplex" is
a regular geometric figure whose comers (vertices) are all equidistant. For the
optimization of "k" factors, a simplex of "k + 1 vertices is required. Thus for one
factor, the simplex is a line segment; for two factors, it is an equilateral triangle; and for
three factors, it is a tetrahedron.

A useful concept for determining where to start in a Design of Experiments approach to
improving quality in manufacturing operations has evolved through the Taugchi
approach. This methodology has become popular in today's quality engineering
strategies for achieving target values in production and identifying variables which can
be controlled so as to reduce performance variations. A more extended analysis usually
requires the use of the approaches shown in Figure 2..6 to optimally determine the
responses of factors in an analytical program.
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2.3 Multivariate Methods

As the title implies, multivariate methods deal with bodies of data representing
observations of several (usually more than three) variables on each sample. These data
may be composed of measurements of very different kinds including both continuous
and discrete variables and may be expressed by a variety of units encompassing a wide
range of values. These observations are usually summarized in a data matrix of "p"
variables (columns) measured on "n" samples (rows). Thus the data can be considered

to describe "n" points (objects) in "p" dimensions (space). Obviously, if "p" is greater
than three, visual display of the data becomes a challenge.

“p” variables
X11 X122 X13 X4 ceerevennnn X1p
X21  X22  X23 X234 creererenn. X2p
X3]  X32 X33 X34 e X3p
X41 X422 X433  X44 ceeeenne. X4p
"n"” objects : : : : :
le tz XH3 Xn4 ............ an

“Chemical fingerprinting" is a methodology designed to provide a detailed
description of complex chemical formulations for which no single measurement
provides adequate information. It is, therefore, a multivariate approach based on
measurements developed in designed experiments and addresses four important issues:

reduction of dimensionality
multivariate correlations
multivariate classification
data summarization.

It is important to keep in mind that the multivariate methods applied to these issues are
not always exclusive in that, for example, a method for the reduction of dimensionality
may also provide useful information on possible classifications. Graphical presentation
of the results of an analysis is a vital and common feature in all of these methods and
can often provide the analyst with important new insights.

It is the aim of all multivariate analyses to gain some insight into the structure and
information content of these data. The efforts to achieve this aim are generally directed
to a few broad issues:

1. Reduction of "dimensionality” - can fewer than "p" dimensions (variables)
describe (graph) the data without si gnificant loss of information?
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2. Multivariate correlations - are there significant correlations between some of
the "p" variates?

3. Multivariate classification/discrimination - are there "natural” groupings in
the data and can individual samples be “assigned"” to one of these groups?

4. Summarization and presentation of results - what are the "best" methods for
conveying the information content of the data?

Prior to actually performing multivariate analysis on experimental data sets, one should
consider the following issues:

1. In the beginning, it is not always known exactly which direction the
analysis should take and a good deal of data exploration may be required.

2. Given data of many different types and value ranges, should the data be
"normalized" prior to analysis and, if so, by which means?

3. If some of the "p" variables are more important than others, a scheme for
"weighing" the variables must be selected and applied.

4, In most cases the selection of the "p" variables is based on scientific
intuition and imposes a limit on how much analysis can be performed.

5. The nature of the problem and available experimental resources determine
the ratio of "n" to "p" (ideally 10:1). This places constraints on the extent of
the analysis.

6. Quite often, the human inability to visualize graphically more than three

orthogonal axes prevents the analyst from obtaining a necessary "feel” for
the data and, hence, a notion of what to do next.

7. Multivariate methods are computationally intense and the "number
crunching" capacity of most available computers sets an upper limit on "p",
"n", or both.

8. Unlike univariate points on a line, points in "p" space do not have a unique

linear ordering and the human desire to impose this condition may resultin a
misleading view.

Close cooperation between the analytical chemist and the statistician can overcome
most, if not all, of the above difficulties and produce insights and understandings of
complex multidimensional objects (samples) which would, in the absence of these
methods, be obscured.

In the section 2.2 Design of Experiments, the idea of "measurement space” was
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introduced and this concept is a fundamental component of the multivariate approach.
The individual objects (samples) can be seen as "points” in a space of "p" dimensions.
The location of the points (in "p" space) is specified by a set of coordinates which are
the values of the "p" variables for that object (sample). An equivalent description is that
the "points” are the terminations of "vectors" whose components are the same "p"
variables. Now it is possible to understand that "points" which are close to each other in
this "p" space are also "close" in their measured variables; the "distance" between them
being a measure of their "similarity." If all of the "p" variables are of the same kind
(concentration, absorbance, mass abundance, wavelength, etc.) there is no difficulty
with this simple model. If, however, the variables are of a mixture of kinds with quite
different “values," the simple model may be distorted by the larger "values" and
consideration should be given to "scaling" the variables by some "normalizing"
technique. By far the most common normalizing technique is the “z score" method
whereby the variables are each transformed to have a mean of zero and a variance of
one. The effect of this transformation is to place all of the variables on an equal basis
and if this is not the case (all variables equally important), the variables must then be
individually assigned "weights" by the analytical chemist (here, the statistician can only
provide advice). These decisions concerning "normalization" and "weighing" of the
variables are important data "pre-treatment” considerations, but, given the preservation

of the original "raw data," are not irrevocable.

For those conditions where "p" is greater than three, visual examination of the vector
terminations (or points) is not possible. However, the principles of Euclidean Geometry
are also equally valid for vectors in "p" dimensions. The true length of the vector is
equal to the square root of the sum of the squares of its coordinates. The Euclidean
distance "d" between the terminations of any two vectors is simply the square root of the

n__n

sum of the squares of the difference between their respective "p" coordinates. These

relationships are summarized for 2, 3, and "p" dimensional space in Figures 2.7, 2.8, and

100



Ry = ()2 + G212
R, = [(xg)? + (y2)21112

d=[(xy -x1)? + (y2 - yp211/2

are all in the same plane.

Figure 2.7 Two Dimensional Case (Plane Geometry)
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Figure 2.8. Three Dimensional Case (Solid Geometry)
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2.9. Note that the two vectors ("R1" and "R3") and the distance line "d" in each case
form a triangle and only requires two dimensions to display the graphical features. This
holds for the comparison of any two objects (points) in "p" dimensional space. Given a

set of "n" objects (samples) defined by "p” variables, it is possible to calculate all of the
n(n-1)/2 pairs of "d" distances between the objects.

R; = [(xl)2 + (yl)2 + (21)2 ......... + (p1)2]1/2
Rz = [(x2)2 + (y2)2 + (22)2 ......... + (p2)2]12
d =[(x2-x1)2 + (y2 - y1)2 + (22 - z1)2......... + (p2 - )12
R, Note: R1 » Ry and '@
d are all in the same plane.
Three points (origin and the
terminations of R, & R,)
.. define a plane (two dimensions).
Origin

Figure 2.9 Multi (p) - Dimensional Case (Hyperspace)

A distance between variables can also be calculated by means of a transformation of the
correlation matrix. The correlation matrix is a square symmetrical matrix providing for
each pair of variables, a correlation coefficient "r". The diagonal of the matrix is unity
for all self-correlations. The most direct transformation is made by subtracting the
absolute value of the individual correlation coefficients from one (1). If negative
correlation coefficients are to be considered an indication of dissimilarity, then one
should use the signed values in place of the absolute values. Having done this we now
have a pseudo distance table for the variables.

The Euclidean distance measure discussed above is only one of many possible metrics
or measuring systems. If each of the "p" variables are normally distributed (which is
most often the case), then the points in "p” space have a characteristic form or pattern.
This pattern is dependent upon both the individual variances and the correlations
between the variables. If, for instance, "p" = 2, "r" (correlation coefficient) = 0 (no
correlation) and the variances are equal, the locus of points equidistant from the centroid
of the pattern is a circle. Given some degree of correlation between variables and/or
unequal variances, the locus becomes an ellipse. With "p" > 2, the locus of points
equidistant from the centroid is the surface of an ellipsoid ("p" = 3) or hyperellipsoid
("p" > 3). Note that the major diameter of the ellipse (or ellipsoid) is in the direction of
greatest variance. The Euclidean metric defines the locus of points equidistant from the

centroid to be a circle ("p" = 2), the surface of a sphere ("p" = 3), or a hypersphere ("'p"
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> 3) and distances (to the centroid) based on this metric can, in a statistical sense, be
misleading. A metric which does take into account these statistical considerations
(unequal variances and correlations) is the Mahalanobis distance. Although this metric
is often superior to the Euclidean, its computation is more complex and involves matrix
algebra to find the matrix inverse of the covariance matrix: a job best left to a statistician
and computer.

A closer look at the multivariate ideas and techniques having the most relevance to the
search for chemical “fingerprints” and signatures is now in order.

Issue #1. Reduction of dimensionality

Two techniques, Multi-Dimensional Scaling (MDS), and Principal.Component Analysis
(PCA), have direct applications to the "fingerprinting” problem in that both provide a
picture in two or three dimensions of the similarities (or differences) between the
signatures of the samples. These methods not only facilitate interpretation, but simplify
the mathematics (fewer dimensions or variables to handle). Additional benefits include
the elimination of redundancies (correlations) in the original data and the possibility that
the abstract "new" dimensions (variables) may have some "real" physical significance
(reification).

The technique of MDS is designed to produce 2 "map" depicting the relationships
between the objects (samples) based on a table (see above) of distances between all
pairs of objects. As noted above, these distances are usually expressed in the Euclidean
metric, but not exclusively so. The MDS procedure first finds from the table the two
objects which are maximally distant. These objects are then plotted on the map’s central
horizontal axis at maximum separation. Next, the object at maximum distance from the
first two is identified and, by an arbitrary convention, is plotted either above or below
the central horizontal axis to for a triangle whose sides are the distances between the
three objects. The remaining objects are then in turn "fitted" into this triangular
configuration. An initial "goodness of fit" between these configuration distances and the
distance table is then calculated and used iteratively to change each object’s map
coordinates until no further improvement in "fit" can be made. At this point the final
map is drawn. Most MDS software give the user some control of:

1. Map dimensionality (usually 1,2, 0r 3)

2. Assignment of "weights" for the variables

3. Choice of “normalizations” for the variables
4, Choice of the distance metric

5. The maximum number of allowed iterations
6. Map "convergence" parameters

103



7. Map editing - size, position, and rotation

The method of Principal Component Analysis (PCA) is a transformation of the original
variables into a completely new set with reduced dimensionality, the principal
components. While there exist the same number of new principal components as original
variables, there is also the expectation that the first few principal components (2 or 3)
will account for most or possibly all of the information content in the original data set.
PCA is general in its scope, makes no assumptions about the nature of the original
variables, and uses no mathematical model. The principal components (PCs) generated
by the procedure have the following properties:

1 Each PC is a linear combination of the original variables. Thatis, each is
equal to a sum of the original variables each having unique coefficients.

2. For each PC the sum of the squares of the coefficients is unity.
3. The first PC is that linear combination having the greatest variance.
4, The succeeding PCs are uncorrelated with previous PCs and contain the

greatest amount of the remaining variance.

A consequence of 3 and 4 above is a set of variables (PCs) which are uncorrelated with
one another and, therefore, mutually orthogonal and are arranged in decreasing order by
the percentage of the total variance they contain.

The PCA procedure can be explained in geometric terms. If the original "p" variables
are all normally distributed, the collection of the "p" points (samples) in "p" space will
be a hyperellipsoid having a definite centroid located at the coordinates of the common
mean. Finding the PCs corresponds exactly to finding the principal diameters of the
hyperellipsoid and placing them in decreasing order of length. The locations of the
projections of the "n" points onto these diameters as measured from the centroid are the

individual PCs.

One should understand that the PCA method is not independent of the scale of the
original variables and the application of "weightings” to some of these variables can
have a profound effect on the results. If the original variables are of quite different
types, of different units, or of different scales, consideration should be given to
normalizing or standardizing these data prior to PCA. If a correlation analysis reveals
that the original variables are all uncorrelated, or nearly so, there is little to be gained
from a PCA as the probable result would be a computationally expensive coordinate
transformation.

In practice, the entry point for the PCA is the matrix of correlations between the
original variables (or a variance/covariance matrix). The matrix is a square ("p" x "p")
symmetrical about the diagonal. Mathematical operations are performed on this matrix
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and result in "p" eigenvalues together with "p eigenvectors whose "p" components are
the coefficients described in 1 and 2 above. The percentage each eigenvalue has of the
sum of all the eigenvalues is the percentage of the total variance it contains.

Issue #2 - Multivariate Correlations

In the section Basic Statistics we discussed briefly the calibration of an analytical
instrument using the method of least squares. That is we developed the equation:

y=a+Dbx

where: a = the "y" intercept, b = the slope
This is an example of a univariate linear regression. We also calculated a "figure of
merit” for this equation called the correlation coefficient "r" with values ranging from -1

through O to +1. Recall that large absolute values of "r" indicate a close relationship

(correlation) between "X and "y".

In the section Design of Experiments an extension of this idea was presented when the
"fitting" of a "model” was used to define the response surface. In fact, using a first
degree polynomial equation in the "k" factors to predict the value of the dependent
variable (response) is an example of a Multiple Regression Analysis. Multiple
regression analysis is a very useful and general statistical procedure for the study of the
relationship (correlation) of a single variable (response) to a linear combination of two
or more other variables (predictors), including a constant term and a random error term.

y1 =bg +bixy +box2 + b3x3 + bgx4 ...t DpXp + €p

Where:y = response variable
b( = constant term
X1.-Xp = predictor variables
by..bp= regression coefficients
ep = random error term (residual)

An example of a chemometric application of this method is the study of possible
relationship of a measured physical property of a material (tensile strength, viscosity,
hardness, etc.), to a group of chemical measurements made on the same sample of the

material.

As with the univariate regression above, a “figure of merit" can be computed for the
result of a multiple regression analysis and it is known as the coefficient of
determination ("r2") and its values range from O to 1. The exploration of these
correlations is complicated by the large number of possible linear combinations of the
predictor variables and many statistical software programs provide a means to automate
the search for an optimum combination. There are usually three approaches to the
problem and all are based on a user supplied criterion (rule) for the determination of the
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optimum combination:

1. A forward selection of predictors.
2. A backward elimination of predictors.
3. A stepwise regression (a mixture of #1 and #2).

Having completed these searches, it is left to the user to make the important decision on
which linear combination of predictors and coefficients will become the model. The
software can provide some assistance in the form of "F" statistic values and sometimes
graphical plots of the predicted values versus the measured values for each combination
can be examined. :

Example: Determination of the component ratio for polyurethane foam insulation for an
aerospace system.

An important requirement in the preparation of a cured thermal protection polyurethane
foam material is the control of the two part component ratio A and B. A study to
determine the true relative amounts of the 'A' Component (isocyanate) and the ‘B’
Component (polyol)was conducted using instrumental analytical methods (FTIR, ICP,
and TGA) to determine the true ratio of these components after cure has been
completed. The application of these analytical methods together with the use of
multivariate linear regression techniques permit the determination of the true 'A"'B' ratio
with an error of less than ten percent (10%).

Fingerprinting work performed on this foam material has demonstrated that FTIR, ICP,
and TGA are the instrumental methods best suited to the ratio determination.

A single lot of foam material for which the results from the full complement of
acceptance tests were available was used to prepare accurately weighed "cup” samples
(in triplicate) of 0.60:1.00, 0.80:2.00, 1.00:1.00, 1.20:1.00 and 1.40:1.00 'A":'B' ratios. A
complement of "production sprayed” samples were also prepared for correlation
analysis. The ability to produce these samples (cured foam material) from such extreme
ratios is a testimonial to the robust mature of this formulation. The individual samples
were then each subjected to FTIR, ICP, and TGA analyses. Both a forward and
backward stepwise multiple linear regression analysis was performed on the results from
each method and on a composite of all of the results. The resulting predicting equation
are of the form:

Z=a+byx] +bpxy... +bjx;
where: Z="A""B'ratio
a = intercept (forced to zero)

b = regression coefficient
X = predictor variable
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From the analysis of fourteen wavelengths in the infra-red spectrum, 1510 cm-1 and
1067 cm-1 were identified as the critical predictor variables. These two intensities
remained the critical predictors in the composite regression analysis. Partial "f" tests and
" tests confirmed the significance of these tow predictors at the 95% confidence level.
The final prediction equation defines a three dimensional plane (See Figure 1.):

Z = 0.02349x] - 0.02494x)

where: x1 = 1510 cm™!
x9 = 1067 cm-1

Figure 2.10 Response surface for two wavelengths used in this study.

This equation produces an adjusted coefficient of determination r2 = 0.999 and
an interval error estimate of *0.071 meaning that 99.9% of the 'A"'B’ ratio is explained
over the entire ratio interval with a probable error no greater than 7%. The ICP and
TGA regressions each had a coefficient of determination of approximately 0.95 and
interval error estimates of 0.10 (10%). A graphical representation of the response surface
is shown below.

Conclusions and Recommendations
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An on-going study to determine if foam aging has a significant effect on the analytical
results is being completed. Consideration will also be given to the expansion of this
effort to include the correlation of the foam's physical and mechanical properties to both
the 'A"'B' ratio and its analytical predictors. Alternatively, the knowledge gained in this
study could be applied to the adjustment of some or all of the major material or process
factors to produce the desired 'A":'B; ratio. It is now possible to accurately determine
whether, in the foam application process, the desired 'A"'B' ratio has, in fact, been
achieved. FTIR analysis, in particular, revealed that the ratio of infra-red light
absorption be a pulverized sample of foam at 1410 cm-1 and 1067 cm-1 is a direct
measure of the relative amounts of the 'A' and ‘B’ components reacted to form the cured

foam.

Example. Using factor analysis to determine the reliability of a spectroscopic analysis.
by determining the number of significant factors

Consider the case where a spectroscopic analysis is performed in the presence of other
potential absorbants and system noise. The analyst records measurements for two peaks
in the absorption spectrum of the desired compound at different concentrations . This
approach can be used to answer the following questions:

(a) How many compounds are in the mixture?
(b) What are the intensities at these wavelengths for these compounds ?
(c) What is the concentration of each compound in each experiment?

The theoretical absorption for peak 2 should be twice that of peak 1; however, the data
is recorded as:

L Wavelength 1 Wavelength 2 j
0.8404 2.0296
1.8982 4.1676
3.1831 5.8166
4.1665 7.9562
5.3620 9.8650
5.9200 11.6624
7.0987 13.8794
8.1588 16.3139
8.9828 18.0685
10.3643 20.3791

The data can be graphed according to the figure below. Note that the linear fit is not
very good. Variations from the linear relationship may be due to system noise or the
effects of unknown absorbants.

Ordinarily the analyst would determine the best linear fit to the data by performing a
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linear regression on this data. One would then obtain the equation:
I = 0.5063I +0.02125.

This equation is represented by the line drawn through the data points in the graph . In
most cases this approach is satisfactory; however, there is always a lingering question
about if this one fit is sufficient.

Another useful approach is to reduce the dimensionality of the data using principal
components and see how many factors are needed to accurately model the data. A
regression and principal component analysis using a commercial software package
provides the following information:

Whole-Model Test
Analysis of Variance

Source DF  Sum of Squares Mean Square F Ratio

Model 1 87.016642 87.0166 2101.656
Error 8 0.331231 0.0414

C Total 9 87.347873 0.0000

Note that the sum of squares for the one degree of freedom model is much larger than
the error variance., hence the F ratio is very high. Obviously the analyst is able to apply
the least squares fit to the data with confidence.

Further results from the analysis gives:
Response: ~ Wavelength 1

Summary of Fit Rsquare 0.996208
Root Mean Square Error 0.203479
Mean of Response ~ 5.59748
Observations (or Sum Wgts) 10

The response parameters show an 2 = 0.996 for the 10 data points. Hence the linear fit
is good. The response curve for this data set also shows a good fit in the plot:
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Figure 2.11 Regression fit for spectrometric calibration.

For the principal components portion of the analysis, one then decomposes the original
data into principal components of the form:

X1= x1cosf+xpsinf
X2 = -x1sinf+x9 cosf.

This analysis reveals the following information:

Eigenvalue 1.9981
Percent: 99.9051

which indicates that the principal component at wavelength1 accounts for 99.9 % of the
information, thereby confirming the earlier observations.

Issue #3 - Classification and Discrimination

The method of Cluster Analysis is directed to the task of identifying groups of similar
objects based on the observational data. This analysis is usually performed to search for
the existence of some natural grouping in the data. The method is relatively simple,
straight forward, and produces an easily understood dendrogram or hierarchical rtree.
Cluster analysis, like MDS, is based on distances and can be applied to the study of the
relationships between individuals (samples) as well as variables.

There are two basic approaches to the clustering problem:
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1. The divisive approach which begins with all of the objects in a single
cluster and proceeds to subdivide this cluster into separate clusters based
on dissimilarities.

2. The agglomerative approach which begins with each object in its own
cluster and proceeds to form other clusters based on similarities.

By far, the agglomerative approach is the most popular and, therefore, the one we will
examine. The method requires measures of similarity between all objects being studied
and this is usually a distance matrix. Any data which can be used to create such a
matrix is, therefore, suitable and the previous comments on the distance metric apply.
The four general steps in the clustering procedure are: .

1. Assign each object to its own unique cluster.

2. Locate the shortest distance in the matrix and merge these two clusters.

3. Update the distance matrix for this cluster's distance to the remaining
clusters.

4, Repeat steps #2 and #3 until there is only one cluster.

During this procedure a linked list is generated which contains, in order, the mergings
(fusions) and the distance at which they occurred. This list is then used to draw the
dendrogram or tree. The rules by which the distance matrix is updated in step #3 above
are known as the clustering algorithm and there are five popular ones:

The single linkage algorithm
The complete linkage algorithm
The average linkage algorithm
The centroid algorithm

Ward's method

Nk

Implementation of these algorithms on a single data set will generally produce five
distinct dendrograms and this raises the question "Which is best?" The best will usually
be the dendrogram with the most faithful reproduction of the original distance matrix.
The distance between any two clusters (objects or groups) is the distance level at which
they both first appear in the same cluster (fusion level). With this understanding, a
distance matrix can be constructed from the dendrogram and then compare the
corresponding entries to the ones in the original distance matrix and even calculate a
goodness of fit in much the same (RMS Error) way as for the MDS map. In fact both
cluster analysis and MDS constitute summaries (in different visual forms) of the
information contained in a distance matrix.

The analyst must make many of the same basic decisions prior to a cluster analysis as
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was necessary for MDS, namely:

1. Should the variables be normalized?
2 Should "weights" be assigned to the variables?
3. Should principal components be used and if so, how many?

4, Which algorithm should be used?

5. If variables instead of samples are being studied, how should the distance
matrix be calculated?

6. Which "goodness of fit" calculation should be used and what is the
decision value?

A major criticism of cluster analysis is that it will by its very design always find clusters
even when "homogeneous” or "clusterless” data are analyzed. Any clusters identified
by this method should be confirmed by MDS and scatter plots. The analyst should be
aware that the results of cluster analysis depend a great deal on the distance matrix and
the particular algorithm used.

The method of Discriminant Analysis deals with the problem of developing an optimal
separation rule to distinguish between two or more known (a priori) groups of objects
(samples) based on the measurements of several variables on all of the objects. The
method could be used, for example, to investigate how well samples of acceptable and
unacceptable materials can be separated using a number of chemical measurements
applied to both. The intent is to develop a rule which would, on the basis of the
chemical measurements, correctly allocate a subsequent sample to one or the other
group (acceptable or unacceptable). While the advantages of such a rule are great, there
is a certain probability of misallocation and the rule must be chosen to minimize this
risk.

There are a number of ways to view this task. First. it can be seen as an extension to
multivariate observations of the method of analysis of variance wherein the "between
group"” variances are maximized while at the same time the "within group" variances are
minimized. Like multiple regression analysis, discriminant analysis is concerned with
finding an optimal linear combination of the original variables (or a subset thereof)
which satisfies these variance objectives. That is to say, the optimal linear combination
(an equation having a constant term and coefficients for all included variables) would,
when applied to all objects in both groups, yield means for the groups which have the
greatest possible numerical difference and variances for each group that are as small as
possible. Application of this rule would then create a condition where the centers
(means) of the groups are far apart and there is minimal overlap between their
distribution curves (minimum variances). The calculated numerical result for any
individual object (sample) is known as a discriminant score and the equation's individual
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coefficients can be viewed as weights for their respective variables.
DF = bg + b1x] + bax2 + b3x3 + bgx4 ...t bpxp

Where:DF = discriminant function
b = constant term
X1...Xp = variables
by..bp = discriminant coefficients

An equivalent geometrical interpretation is to find the centroids of the hyperellipsoids of
the groups in "p" (or less) space which are maximally distant from one another. It is
preferred that the distance be the Mahalonobis distance based on the normalized (z-
scored) variables. Then the degree to which the hyperellipsoids interpenetrate each
other sets the limit on the method's ability to properly allocate an object to a given
group. Having located the group centroids and objects in "p" (or less) space, the simple
method of "k" nearest neighbors can be used to assign a new object to the proper group.
The method assigns the new object to the group having the largest percentage of the "k"
neighbors closest to it. The value of "k" is usually taken to be a small odd number in
order to prevent "tie” votes. Given a rather large number of assigned objects in the
groups, this method is rapid, straight forward, and makes good statistical sense. The
other methods of making assignments require the calculation of discriminant score value
known as the curting score and this can be a complicated matter if the population size of

the groups differ significantly.

Since the mechanics of discriminant analysis and multiple regression analysis have
mathematically much in common, the statistical software programs usually provide the
same types of options for exploring the data: "forward" selection, "backward”
elimination, and "stepwise" operations on the original variables. Here too, it is
sometimes possible to examine a graphical plot of the separation results.

Issue #4 - Presentation of Results

While it cannot be denied that tables and listings of calculations and results efficiently
present the essential hard facts, graphical displays or other visual representations of
multivariate data are extremely useful tools for their examination and presentation.
Contour maps (response surfaces), similarity maps (multidimensional scaling and
principal components analysis), dendrograms/trees (cluster analysis), and scatter plots
(regression analysis) are all intuitive and easily understood by everyone. A deep
understanding of the mechanics behind the generation of these visualizations is not a
prerequisite to reading the information they contain and this should be a major
consideration when presenting results to the non-statistician. Frequently a picture is not
only the besz, but the only way to convey the complex relationships between
multivariate objects. Beyond their value in data presentation, the graphical techniques
are indispensable in the exploring and formulating stages of analysis. A great deal of
good and practical advice on the design and preparation of a variety of charts and graphs
is contained in the book by W. S. Cleveland and the two books by E. R. Tufte (see
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Reference Materials).
Final Comments and Advice

With most multivariate data sets there are almost always a variety of alternative
analytical approaches. The choice of which method is most appropriate depends on the
data type(s) and the objective(s) of the analysis. Unfortunately, no one method or
technique is necessarily the best choice and it is often wise to use several methods to
explore different facets of the data. There are two - ways to view the data set: as the
relationships between the individuals (samples) as defined by the variables and their
values, and as the relationships between variables defined either by their pairwise
correlations or their variance/covariance structure. In the first case we examine the "n"

individuals in the "p" variables space while in the second we see the "p" variables in "n"
space.

Before undertaking any multivariate analysis, the univariate summary statistics for each
variable should be thoroughly studied. The mean, variance, standard deviation, range,
the skew, the kurtosis, and the z-scores can all be easily calculated using available
software. This variable by variable "quick look" should be supplemented by histograms
to verify distribution assumptions and to screen for "outliers.” Next, the correlation
matrix should be created and examined, followed by a scrutinizing of the scatter plots of
all pairs of variables. The correlation matrix contains only the simple linear correlations
and if the relationships are more complex, the scatter plots together with "eye-brain"
device may uncover them. Recall that if the variables are all relatively uncorrelated, a
principal components analysis is probably pointless. The degree to which some of the
variables are correlated will give some guidance in the investigation of possible linear
combinations. At this point it is advisable to consider the question of normalization of
the variables and whether some of the variables should be assi gned weights.

A statistical computer software program will obligingly perform any of its analyses on a
data set whether or not the method is appropriate. Consider the problem to be solved
and your objectives, then use common sense (the computer has none).

Just as in the univariate case, multivariate outliers can exist and if scanning the data by
eye fails to detect them, consider using the Mahalanobis distances from the common
centroid as a discriminator.

Finally, recognize that multivariate analyses do not always give "text book" answers,
even after a great deal of exploration. It is also very difficult to know when one has
exhausted all of the many possible approaches. One of the best ways to develop skills
and gain experience in these methods is to use available software to analyze the
classical (known) data sets (many of the data sets are included in the books listed in the
Reference Materials).
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AAS
AES
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Al
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AUFS
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CFC
CI
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CPU
CRT
DF
DOE
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ECD
EDS
EI

ES

ET
FAAS
FAB
FES
FID
FTIR
GC
GC/FID
GC/MS
GLC
GSC
HCFC
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Atomic absorption
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Capillary column

Chlorofluorocarbons
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Gas-solid chromatography

Hydrochlorofluorocarbons
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ICP/AES
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ISS
LAN
LC
LLC
LIMS
LHDS
LNTB
LSC
MAD
MAPTIS
MCT
MR
MS
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NS

P

PC
PMT
QC
QEL
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QMA
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RI
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SIMS
SIM
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SPC
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Midrange

Mass spectrometer
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Nonpolar stationary phase (GC term)
Polar stationary phase (GC term)
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Quality control
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Selective ion monitoring

Standard operating procedures
Statistical process control

Standard Reference Materials
Thermal conductivity detector
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TED
TGA
TMA

XPS
XRF
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Thermionic emission detector
Thermo-gravimetric analysis
Thermal Mechanical analysis
Ultra-violet

X-ray photoelectron spectroscopy
X-ray fluorescence spectroscopy









